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Résumé de la thèse

Introduction
La propagation des pathogènes résulte de l’interaction complexe entre plu-

sieurs facteurs, y compris les interactions entre un pathogène et ses hôtes, l’en-
vironnement ou d’autres pathogènes. Les interactions entre pathogènes sont de
plus en plus étudiées. En effet, la propagation de certaines maladies ne peut être
analysée sans la prise en compte de ces interactions.

La modélisation mathématique représente un outil d’intérêt dans la lutte
contre les maladies infectieuses. En particulier, les modèles mathématiques per-
mettent de comprendre les données épidémiologiques en formulant des hypo-
thèses mécaniques sur la propagation des maladies. Dans le cas particulier de
plusieurs pathogènes et de leurs interactions mutuelles, les modèles mathéma-
tiques peuvent être utilisés pour répondre à une série de questions écologiques
et épidémiologiques. Par exemple, ils peuvent clarifier les effets des interactions
spécifiques sur la co-existence ou la dominance de plusieurs souches. Cependant,
bien qu’il soit important de tenir compte des interactions entre pathogènes, plu-
sieurs études mettent en évidence le rôle des facteurs environnementaux et ceux
liés à l’hôte.

Les contacts entre les hôtes ont une importance reconnue dans la propaga-
tion d’épidémie. De récentes avancées technologiques ont permis d’aquérir des
quantités massives de données, à une résolution spatiale et temporelle sans pré-
cédent, sur différents types de contacts humains [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Ces informations détaillées
sur les individus et leurs relations mutuelles peuvent être pris en compte dans
des modèles épidémiques en utilisant des réseaux [26, 27]. Ici, les hôtes sont
représentés sous forme de noeuds dans un réseau, tandis que leurs connexions
mutuelles sont représentées par des arêtes. La transmission s’effectue sur les
arêtes émanant de noeuds infectés. Au cours des dernières années, notre com-
préhension théorique des processus de diffusion sur les réseaux de contacts s’est
considérablement améliorée [28]. Néanmoins, l’étude des propriétés des contacts
humains en cas de co-existence de plusieurs souches est encore préliminaire. En
effet, la majorité des études ne concerne que l’interaction de deux agents patho-
gènes [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. Les connaissances
de l’effet des interactions simultanées et hétérogènes liées aux pathogènes sont
donc limitées.
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Interactions entre pathogènes
Plusieurs mécanismes d’interaction ont été observés. Tout d’abord, les inter-

actions peuvent être concurrentielles ou coopératives. La concurrence peut sur-
venir en raison de ressources limitées. Il a été démontré, par exemple, que la co-
lonisation par Staphylococcus aureus prévient l’invasion par d’autres souches de
S. aureus [43]. Certains pathogènes comme Streptococcus pneumoniae peuvent
également nuire aux concurrents en produisant des composés chimiques [44].
Enfin, certaines infections confèrent un certain degré d’immunité croisée contre
d’autres pathogènes, protégeant efficacement l’hôte des infections secondaires [45].

Les pathogènes peuvent également interagir de manière synergique, facilitant
ainsi leur propagation mutuelle. Par exemple, les infections grippales d’origine
virale peuvent augmenter temporairement la susceptibilité aux infections bac-
tériennes par S. pneumoniae et Neisseria meningitidis [46, 47, 48]. Le VIH est
connu pour partager une synergie avec de nombreux pathogènes, comme Myco-
bacterium tuberculosis, Plasmodium falciparum ou le HPV [49, 50, 51, 52, 53, 54,
55, 56]. En effet, l’immunosuppression induite par le VIH favorise l’acquisition
de plusieurs infections. En retour, le HPV endommage la barrière épithéliale du
tractus génital, ce qui augmente le risque de contracter le VIH. P. falciparum, au
contraire, semble augmenter la virulence de l’infection au VIH, en augmentant
sa transmissibilité.

Les interactions entre les pathogènes et/ou les différentes souches d’un même
agent pathogène ont des implications épidémiologiques et de santé publique im-
portantes. Par exemple, pour comprendre les mécanismes à l’origine de l’émer-
gence et du maintien de la résistance aux antibiotiques des bactéries S. aureus,
S. pneumoniae et Neisseria gonorrhoeae, il faut prendre en compte des facteurs
écologiques qui façonnent leurs écosystèmes, notamment la concurrence entre
les différentes souches [57, 58, 59, 60]. Une interprétation correcte des modèles
éco-épidémiologiques est également fondamentale pour évaluer l’efficacité des
vaccins. Étant donné que les vaccins peuvent ne cibler que quelques souches, la
compréhension de l’impact des interactions concurrentielles peut aider à quan-
tifier le risque de remplacement des souches cibles par les souches non-cibles.
Dans le passé, le remplacement post-vaccinal a été observé dans le cas du pneu-
mocoque [61, 62]. Des augmentations sporadiques de la prévalence des types
de HPV non ciblés ont également été signalées [63, 64, 65, 66], bien que le
remplacement fasse encore l’objet de débats [67, 68].

Modèles mathématiques en épidémiologie
Les modèles épidémiologiques sont souvent formulés en termes de comparti-

ments, c’est-à-dire de groupes d’hôtes partageant des propriétés similaires telles
que l’état de santé. Les individus peuvent passer d’un compartiment à l’autre
lors de la survenue de certains événements tels que l’infection et le rétablisse-
ment [69]. Dans le modèle Susceptible-Infected-Susceptible (SIS), par exemple,
les individus peuvent être sensibles (S) ou infectés (I). Les infectés peuvent
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transmettre l’infection aux individus sensibles à un taux de transmission β et
se rétablir à un taux µ. Une fois rétablies, les personnes redeviennent sensibles
aux nouvelles infections. Par conséquent, le modèle SIS décrit la propagation
d’infections qui n’accordent pas l’immunité en cas de rétablissement. C’est le
cas par exemple des bactéries commensales de l’homme comme S. aureus, qui
entraînent généralement une colonisation asymptomatique.

Dans le contexte des systèmes multi-souches, les modèles compartimentaux
sont essentiels pour répondre à un grand nombre de questions écologiques et
épidémiologiques, e.g. les conditions menant à la co-existence des souches [70,
71, 72, 73, 74, 75, 76]. Les modèles mathématiques peuvent également être uti-
lisés pour comprendre l’émergence de pathogènes envahissants qui peuvent ap-
paraître à la suite d’importations externes ou de mutations. Par exemple, des
modèles multi-souches ont été utilisés pour comprendre l’émergence des bacté-
ries résistantes aux antibiotiques [77] et des souches pandémiques de grippe [78,
79, 80, 81]. L’analyse de modèles multi-souches peut également aider à évaluer
l’efficacité des interventions de santé publique, par exemple en évaluant l’im-
pact à long terme d’un vaccin sur une population de pathogènes et le risque de
remplacement [82, 83, 84].

Les modèles compartimentaux supposent souvent que les hôtes sont bien
mélangés, c’est-à-dire que chaque individu a la même probabilité de rencon-
trer tous les autres. Toutefois, cette approximation peut représenter une limite
dans certains cas. La discipline de network epidemiology fournit le cadre appro-
prié pour tenir compte de la complexité inhérente à la structure des contacts
et à la dynamique épidémique. Les effets de la structure des contacts sur la
propagation de l’épidémie ont été largement étudiés au cours des deux der-
nières décennies [28]. Les résultats les plus importants concernent le seuil épidé-
mique [85, 86, 87, 88], la prévalence [89, 90, 91, 92, 93, 94, 95] et les stratégies de
vaccination [96, 97, 98, 99, 100, 101]. Les développements théoriques ont permis
de traiter également des hétérogénéités découlant de la nature temporelle des
contacts entre hôtes [102, 103, 104, 105, 106, 107, 108, 109].

Plusieurs travaux ont porté sur la dynamique des pathogènes en interac-
tion sur des réseaux de contacts. La plupart des études se sont concentrées sur
deux souches qui interagissent par exclusion mutuelle ou par immunité croi-
sée [110, 111, 32, 34, 33, 112, 113, 40, 29, 31, 39, 30, 41, 42]. Il a été démontré
que les hétérogénéités de la structure des contacts influent sur la probabilité
de l’émergence de nouvelles souches ainsi que sur la taille des nouvelles épidé-
mies. En ce qui concerne la coopération sur des réseaux de contacts, de nom-
breuses études ont considéré une susceptibilité accrue comme mécanisme d’in-
teraction [35, 38, 36, 37, 114]. Dans ce contexte, il a été démontré qu’à mesure
que la transmissibilité augmente, les pathogènes coopératifs peuvent donner lieu
à des flambées épidémiques discontinues en termes de prévalence. Néanmoins,
la nature (continue ou discontinue) de cet événement dépend de la topologie du
réseau.
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Dynamique des contacts et écologie des souches
multiples

Les travaux présentés dans la section précédente ne considèrent que deux
souches en interaction. Les modèles à deux souches peuvent souvent être étudiés
analytiquement, ce qui permet une caractérisation approfondie de la co-existence
et de ses conditions. Cependant, l’impact de ces résultats avec un plus grand
nombre de souches a été peu étudié. En effet, cela doit être abordé d’un point
de vue écologique, avec la prise en compte simultanée de la stochasticité et de
la sélection exercée par l’environnement, ou de la transmission entre hôtes. Les
auteurs de [115] ont étudié par exemple plusieurs communautés de S. aureus,
S. pneumoniae et N. meningitidis. Ils ont mis en place un modèle minimal de
transmission avec des mutations neutres, capable d’expliquer la diversité géné-
tique entre les souches. Les auteurs de [116] ont plutôt constaté que l’immunité
croisée favorise l’organisation d’une population multi-souches en groupes anti-
géniques distincts, ce qui explique les tendances observées chez N. meningitidis.
Les effets de l’immunité croisée sur la diversité des souches ont également été
étudiés dans le contexte de réseaux de contacts [117, 118]. Les contacts en réseau
favorisent la diversité par rapport à un mélange homogène où chaque individu a
la même probabilité de rencontrer tout le monde. Cela s’explique par la nature
localisée des contacts, qui permet aux groupes de souches d’occuper différentes
parties du réseau.

Dans [119] nous avons étudié l’impact des hétérogénéités structurales et tem-
porelles des contacts sur une population de souches. Nous avons simulé la pro-
pagation des souches multiples suivant une dynamique SIS sur des réseaux syn-
thétiques variant dans le temps, en caractérisant les écosystèmes simulés par des
indicateurs écologiques, e.g. la richesse (le nombre de souches en co-circulation)
et l’indice de Berger-Parker, défini comme la fraction de prévalence associée
à la souche la plus fréquente. Afin de mieux évaluer l’impact de la structure
de contacts, nous avons considéré un modèle épidémiologique neutre où toutes
les souches partagent les mêmes paramètres épidémiologiques. De plus, on a
supposé que le statut de “porteur” confère une protection complète contre les
nouvelles infections.

Nous avons montré que l’hétérogénéité des contacts réduit le nombre de
souches en co-circulation, tout en favorisant la dominance de quelques souches
(Fig. R1). Nous attribuons ce résultat au double rôle des individus les plus actifs,
aussi connus sous le nom de hubs : ces derniers agissent comme super-spreaders,
favorisant la propagation de certaines souches, et comme super-blockers, entra-
vant l’émergence de nouvelles souches. La répartition des hôtes en différentes
groups (communautés) a eu l’effet contraire, même si son impact était faible.
Nous avons également constaté que le nombre de souches en co-circulation dé-
pendait de manière non-linéaire de la durée moyenne du séjour des hôtes en
raison d’un compromis entre le taux d’immigration de nouvelles espèces et le
taux d’extinction de souches qui circulaient auparavant.

Nos résultats sont robustes lorsqu’il y a peu d’hétérogénéités des paramètres

4



Fig. R1. Évolution temporelle d’un écosystème multi-souche. Chaque
couleur indique une souche différente ; toutes les séries temporelles ont été empi-
lées, de sorte que la hauteur des barres indique le nombre total de porteurs. Les
deux vignettes correspondent respectivement à une structure de contacts ho-
mogène et hétérogène partageant les mêmes propriétés moyennes, notamment
le nombre d’individus, l’activité et le nombre individuel de contacts. Les para-
mètres épidémiologiques sont également les mêmes pour tous les souches. On
observe que la prévalence et la richesse sont plus faibles dans le cas d’un réseau
hétérogène ; de plus, dans le réseau hétérogène la dominance de la souche la plus
fréquente est amplifiée par rapport au cas homogène.

épidémiologiques entre les souches, comme par exemple la taux de transmission.
Cependant, si l’ampleur de ces hétérogénéités est supérieure à un certain seuil,
une souche super-adaptée devient dominante, assurant une fraction finie de la
prévalence.

Comme étude de cas, nous avons examiné l’écologie de S. aureus en milieu
hospitalier. S. aureus est une bactérie commensale de l’homme, présente chez 30
% des individus environ. Néanmoins, S. aureus est responsable de la majorité
des infections nosocomiales dans les hôpitaux. Plusieurs études ont décrit l’éco-
logie des souches de S. aureus, révélant une diversité remarquable à plusieurs
échelles [120, 121, 11, 122]. Ici, nous avons utilisé un ensemble de données combi-
nées d’interactions face-à-face et de portage nasal de S. aureus chez les patients
et le personnel hospitalier, collectées dans le cadre de l’étude I-Bird (individual-
based investigation of resistance dissemination) [123, 11, 124, 125, 12]. Le ca-
ractère hebdomadaire des données de portage, les informations sur le spa-type
et le profil de résistance aux antibiotiques, ont permis de reconstituer l’écolo-
gie de S. aureus au cours de l’étude (Fig. R2 (A)). Nous avons montré que
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les caractéristiques temporelles et topologiques du réseau conduisent à une pré-
valence et une richesse plus faibles par rapport à un mélange homogène. Par
ailleurs, des valeurs de prévalence et de richesse similaires sont associées à diffé-
rents niveaux de dominance (indice de Berger-Parker) dans différents réseaux ;
les valeurs obtenues en utilisant les données de contact étaient plus proches des
valeurs empiriques (Fig. R2 (B)). Ce comportement s’explique par les résultats
théoriques et peut être attribué essentiellement à l’effet des hétérogénéités de
contacts.

Fig. R2. Écologie de S. aureus et réseau hospitalier. (A) montre la
composition hebdomadaire de l’écosystème de S. aureus au cours de l’étude i-
Bird. La visualisation est la même qu’en Fig. R1. (B) montre l’indice de Berger-
Parker obtenue respectivement par les données de portage (carrées noirs) et
par les simulations sur le réseau des contacts hospitaliers (bleu) et un réseau
randomisé (gris). Les bandes correspondent à des valeurs qui s’écartent d’un
écart-type de la moyenne. Pour chaque réseau, les paramètres ont été établis
afin de faire correspondre les valeurs empiriques de richesse et de prévalence.

Nos résultats fournissent de nouveaux aperçus sur les effets de la structure
de contacts sur la concurrence des souches et pourraient améliorer notre com-
préhension de la diversité écologique des souches.

Interactions hétérogènes
Dans la section précédente nous avons étudié une population de souches

interagissant seulement par exclusion mutuelle. Toutefois, la co-existence de
souches peut être affectée par des interactions supplémentaires, exercées par
exemple par d’autres pathogènes en co-circulation. Néanmoins, peu d’études
ont été réalisées sur ce sujet. Les auteurs de [76] ont étudié l’interaction entre
Haemophilus influenzae et les sérotypes de S. pneumoniae en co-circulation.
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Leur étude suggère que H. influenzae pourrait favoriser la diversité des sérotypes
de S. pneumoniae en modifiant la réponse immunitaire des hôtes.

Dans [126], nous avons approfondi les connaissances actuelles sur les effets
des interactions hétérogènes dans les systèmes multi-pathogènes. En particulier,
nous avons considéré le cas où deux pathogènes, A et B, suivent une dyna-
mique SIS (un schéma du modèle est montré dans Fig. R3) ; pour simplifier,
A et B ont le même taux de récupération µ. A et B coopèrent de manière
symétrique par une susceptibilité accrue, c’est-à-dire qu’une infection primaire
par l’un augmente la susceptibilité à une infection secondaire par l’autre. Nous
avons supposé que l’interaction coopérative n’affecte pas la transmissibilité, de
sorte que les individus doublement infectés, c’est-à-dire infectés simultanément
par A et B, transmettent les deux maladies selon leur taux d’infection respectif.
B est structuré en deux souches, B1 et B2, qui sont en concurrence en raison
de l’exclusion mutuelle et de leurs différentes valeurs de transmissibilité. Plus
précisément, nous avons indiqué les taux d’infection pour les pathogènes A et
Bi avec α et βi (i = 1, 2), respectivement. Nous avons introduit les paramètres
ci > 1 pour représenter la susceptibilité accrue après une infection primaire.

Sans perte de généralité, nous avons examiné le cas où la souche B2 est plus
transmissible que B1, c’est-à-dire δβ = β2−β1 > 0. En outre, nous nous sommes
concentrés sur le cas d’un compromis entre transmissibilité et coopération, pour
limiter l’exploration des paramètres : la souche la moins transmissible, B1, est
plus coopérative (δc = c1 − c2 > 0).

Dans les cas d’une population bien mélangée (Fig. R3 B), nous avons effectué
une analyse de stabilité pour classer le résultat de la compétition entre B1 et
B2 en fonction de δc et δβ . Nous avons calculé des expressions analytiques expli-
cites pour les conditions de faisabilité et de stabilité de chaque point d’équilibre
dans plusieurs cas. Nous avons montré qu’il est possible pour une souche plus
coopérative de dominer une souche plus transmissible. Nous avons constaté que
le jeu entre interactions différentes (compétitives et coopératives) conduit à un
diagramme de phase complexe dont les propriétés ne peuvent être facilement
anticipées à partir de travaux antérieurs qui considéraient séparément chaque
interaction. Pour certaines valeurs des paramètres, par exemple, les zones de
stabilité associées à des équilibres différents sont superposées, donnant lieu à un
comportement bistable ou multistable (Fig. R4 A,B). Dans certains cas, notre
modèle conduit à un comportement apparemment paradoxal : nous constatons
que l’augmentation de la capacité de coopération de la souche la plus transmis-
sible peut entraîner son extinction. Fig. R4 C montre ce phénomène : dans le
cadre inférieur, correspondant au marqueur noir en Fig. R4 A, B2 est dominant.
Par contre, en augmentant son facteur coopératif (marqueur gris en Fig. R4 A),
B1 gagne la compétition (Fig. R4 C, cadre supérieur). En fait, dans ce dernier
cas B2 favorise la propagation de A, ce qui profite en fin de compte à la souche
la plus coopérative.

Nous avons étudié les effets de la répartition des hôtes en communautés
différentes en considérant une population divisé en deux communautés bien mé-
langées (Fig. R3 B). Le couplage entre les deux sous-populations est réglé par
un paramètre ε (une faible valeur de ε indique peu de mélange entre des commu-
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Fig. R3. Schéma du modèle. (A) Modèle épidémique. Les flèches de couleur
représentent les transitions dues à la transmission de l’infection. Les flèches poin-
tillées renvoient aux infections primaires, tandis que les flèches pleines renvoient
aux infections secondaires ; les paramètres de transmission sont également indi-
qués à proximité de chaque flèche. Les flèches noires représentent les transitions
de récupération. (B) Population homogène. (C) Deux populations homogènes
avec couplage réglé par le paramètre ε. (D) Population structurée en réseau.

nautés distinctes). Dans ce cas, les calculs analytiques n’étaient pas possibles et
nous avons donc eu recours à l’intégration numérique d’équations dynamiques.
Nous avons montré que la répartition en communautés joue un rôle important
sur la dynamique. En fait, cela permet la co-existence des deux souches dans de
la population. Dans ce cas, les souches sont séparées en différentes communautés
afin de minimiser la compétition pour les hôtes. La co-existence est finalement
maintenue grâce au pathogène coopératif, dont la présence permet d’équilibrer
localement la plus faible transmissibilité de la souche B1.

Le cadre déterministe continu analysé jusqu’à présent ne tient pas compte
du caractère aléatoire et de la nature discrète des individus et de leurs interac-
tions. Afin de tenir compte de ces aspects, nous avons fondé notre modèle sur
un cadre discret dans lequel les individus sont représentés par des noeuds dans
un réseau statique. Nous avons considéré des réseaux à la Erdős-Rényi et des ré-
seaux structurés en communautés (Fig R3 D). Les diagrammes de phase étaient
semblables à ceux obtenus dans le cadre déterministe. Néanmoins, le cadre dis-
cret/stochastique a permis d’observer la nature des transitions de phase : dans
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Fig. R4. Diagramme de phase pour une population homogène. (A, B)
Diagrammes de phase obtenue pour différentes valeurs de α, c1 et β2 (α = 0.6,
c1 = 4, β2 = 1.5 en A et α = 0.8, c1 = 7, β2 = 1.1 en B). Sur les axes x et y
nous avons respectivement l’avantage coopératif de la souche B1, δc = c1− c2 et
l’avantage en transmission de la souche B2, δβ = β1 − β2. Dans A et B, chaque
couleur indique la région de stabilité associée à chaque point d’équilibre. Les
motifs hachurés représentent les régions de bi-stabilité ou de multi-stabilité, i.e.
des valeurs des paramètres où plusieurs équilibres sont simultanément stables.
Les limites de chaque phase sont également indiquées. Les deux panneaux en C
montrent les trajectoires dynamiques de la prévalence de B1 (rouge), B2 (bleu)
et A (gris). Ces trajectoires ont été obtenues pour des valeurs de paramètres
correspondant aux marqueurs gris et noir figurant dans le panneau A.

certains cas la transition d’une phase a l’autre était hybride, c’est-à-dire conti-
nue dans la probabilité d’atteindre l’un ou l’autre régime et discontinue dans
la prévalence, selon la valeur de la différence entre les taux de cooperativité de
chaque souche. Ces résultats concordent avec les constatations antérieures selon
lesquelles la topologie du réseau peut influer sur la nature de la transition de
phase. Cependant, une analyse numérique plus complexe est nécessaire afin de
mieux comprendre les propriétés des transitions de phase, en faisant varier la
valeur de δc.

Cette analyse fournit de nouvelles perspectives sur les facteurs écologiques
qui déterminent la dynamique des souches concurrentes. De plus, ce travail
souligne comment le jeu entre de multiples facteurs, par exemple la concurrence,
la coopération et la répartition des hôtes en communautés, peut conduire à la
co-existence ou à la domination de la souche la plus faible.

Conclusions
Dans cette thèse, nous avons étudié les effets de la structure des contacts

sur la diversité des souches en utilisant une approche écologique. Grâce a cette
approche nous avons été en mesure d’affronter des problématiques épidémiolo-
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giques et écologiques qui, jusqu’à présent, étaient généralement abordées dans
le cadre de modèles à deux souches. Nos résultats confirment l’importance de
tenir compte simultanément de l’hétérogénéité des pathogènes et des hôtes dans
les modèles à souches multiples. De plus, nos résultats fournissent de nouvelles
perspectives écologiques et suggèrent des mécanismes susceptibles d’influer sur
la dynamique des épidémies en interaction qui représentent une préoccupation
pour la santé publique.
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Abstract

For many human pathogens, distinct strains have been reported to circulate in the host
population. However, despite our ability to observe strain diversity, biological, envi-
ronmental and host-related mechanisms shaping co-existence patterns remain largely
unexplored. In this context, the importance of modeling contact structure is becoming
increasingly recognized, yet, the study of this aspect is still at the beginning. To date, the
majority of works focus on two pathogens that either compete or cooperate. Here, we
extend current knowledge about strain co-existence on contact networks in two direc-
tions, characterizing the ecology of an open strain population, and analyzing the effect
of heterogeneous concurrent interactions. In a first study, we assess the role of important
contact properties on ecological diversity in a parsimonious model of strain competition.
We found that our theoretical results improve our interpretation of observed patterns in
a joint dataset consisting of face-to-face interactions and Staphylococcus aureus carriage in
a hospital. In a second work, we study a theoretical model accounting for both compe-
tition and cooperation. We consider two competing strains that both cooperate with a
second pathogen. The interplay between transmissibility and cooperative factor led to
a rich phase diagram, showing complex boundaries and bistability. Here, repartition of
hosts into communities enables strain co-existence by dynamically creating different eco-
logical niches. Our findings confirm the importance of host contact structure as a driver
of strain diversity.
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Introduction

Infectious diseases represent a major burden for public health. While efforts in preven-
tion and control have led to a decline in prevalence for several infections, many diseases
are still a source of concern in both developed and under-developed countries. More
importantly, during the last 80 years we have witnessed the emergence of new threats
such as antibiotic resistance [3], human immunodeficiency virus (HIV) [4], severe acute
respiratory syndrome (SARS) [5], Middle East respiratory syndrome coronavirus (MERS-
CoV) [6], pandemic influenza [7], Zika [8] and Chikungunya [9], and the re-emergence of
Dengue [10] and Tuberculosis [11] (TB) in different parts of the world.

Pathogen spread results from the complex interplay between multiple factors, includ-
ing interactions between a pathogen and the hosts, the environment and other pathogens
as well. Pathogen-pathogen interactions have been drawing increasing attention recently.
In fact, the spread of certain diseases cannot be analyzed independently from each other.
For example, recurrent patterns of seasonal influenza reflect the co-circulation of anti-
genically distinct strains that compete for hosts through immune cross-reactions [12].
Competition between resistant and sensitive strains is key to understand the emergence
and maintenance of antibiotic resistance [13, 14, 15, 16]. Knowledge of pathogen-pathogen
interactions is also fundamental to assess vaccine efficacy and risk of replacement by
non-vaccine types. Post-vaccine replacement has been observed in Streptococcus pneumo-
niae [17, 18] and concerns that human papillomavirus (HPV) might meet a similar fate
have been raised too [19].

Mathematical modeling represents an invaluable tool in the fight against infectious
diseases. In particular, mathematical models provide a way to uncover the mechanisms
behind observed epidemiological patterns by formulating mechanistic hypotheses about
disease spread [20, 21]. The consequences of hypotheses can be explored by means of
mathematical analyses or numerical simulations, while their validity can be assessed by
comparing model predictions against epidemiological data. Specifically for the case of
multiple pathogens/strains and their mutual interactions, mathematical models can be
used to address a range of ecological and epidemiological questions. For example, they
may shed light on the consequences of specific interactions – e.g. cross-immunity, altered
susceptibility and co-infections – on multi-strain co-existence and dominance. Models
also help understanding determinants behind new strain emergence [22, 23, 24, 25, 26, 27,
28]. However, while it is important to account for interactions between pathogens/strains,
several studies emphasize the role of environmental and host-related factors. Multi-strain
models need to encompass the complexity arising from the simultaneous accounting of
ecological interactions and the host dimension.
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Host-to-host contacts have been increasingly recognized for their importance to epi-
demic spread [29, 30]. Up until 20 years ago, however, data about human behavior was
limited, thus preventing the accounting of host-to-host contacts into epidemic models.
For this reason, early mathematical models were heavily relying on a coarse-grained
representation of mixing patterns among individuals [21]. Recent technological break-
throughs have changed this picture, yielding massive amounts of data at unprecedented
spatial and temporal resolution about different kinds of human contacts, e.g. face-to-face
interactions [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42] and sexual encounters [43, 44, 45],
as well as about individual mobility at multiple scales [46, 47, 48, 49, 50, 51, 52, 53, 54, 55].

Network epidemiology provides a natural framework to encode detailed informa-
tion about hosts and their mutual relationships within an epidemic model. According to
this description, hosts are represented as nodes embedded in a network, while infection
spreads through edges emanating from infected nodes. Our theoretical understanding of
dynamical processes unfolding on networks, including epidemic processes, has signifi-
cantly improved over the last two decades [29]. The study of properties of host contacts
on multi-strain co-existence is, however, still in its infancy. In fact, the majority of multi-
strain works has been concerned with just two interacting agents [56, 57, 58, 59, 60, 61, 62,
63, 64, 65, 66, 67, 68, 69, 70]. This makes it difficult to draw conclusions about diversity
in larger multi-strain assemblies and about the effect of concurrent, heterogeneous inter-
actions. In this thesis we aim to go beyond such limitations in two directions. First, we
adopt an ecological perspective to multi-strain dynamics, using tools and concepts from
community ecology to characterize strain diversity and to interpret its determinants. Sec-
ond, we assess the impact of heterogeneous interactions types, i.e. co-operative and com-
petitive, on strain co-existence and dominance on adding a new layer of complexity to
the description of strain competition.

This thesis is organized as follows. In Chapter 1 we give an overview of pathogen-
pathogen interactions and discuss their implications for epidemiology and public health.
At the same time, we also introduce some of the fundamental mathematical tools that
will be used throughout this thesis. Chapter 2 is dedicated to networks in epidemiology
and epidemic spread on networks; we focus in particular on the spread of interacting
pathogens/strains. The work associated to my first research article, entitled “Host contact
dynamics shapes richness and dominance of pathogen strains” [1], is the subject of Chapter 3.
There we investigate the impact of contact structure on diversity of multiple strains that
compete for susceptible hosts. More in detail, we assess the impact of contact hetero-
geneities, community structure and host turnover by simulating synthetic contacts. As a
case study, we analyze the spread of Staphylococcus aureus in a hospital by leveraging on
a combined dataset of host-to-host interactions and carriage data. In my second article,
“Interplay between competitive and cooperative interactions in a 3-player pathogen system" [2],
which is included in Chapter 4, we study how additional, cooperative interactions with a
co-circulating pathogen affect the outcome of competition between two strains. We con-
sider both deterministic and stochastic dynamics and investigate the role of networked
contacts and community structure.
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Chapter 1

Multi-pathogen Systems

1.1 Introduction

The spread of pathogens is a complex and multifaceted phenomenon, thus epidemiol-
ogy has established as an interdisciplinary research field, drawing attention from many
scientific areas, including mathematics and computer science. The use of mathematical
models has proven valuable in the fight against infectious diseases. The reasons behind
this success are multiple. First, epidemic models provide a way to formulate and investi-
gate mechanistic hypotheses about how diseases spread at the population scale. Second,
mathematical models can make quantitative predictions about the temporal evolution of
a disease. Models can thus be used both for epidemic assessment and for guiding public
health interventions.

Most mathematical models focus on a single pathogen, ignoring interactions between
pathogens. Although this is appropriate in some cases, certain problems require a multi-
pathogen/strain perspective. For example, the occurrence of pathogen-pathogen inter-
actions can hamper the efficacy of treatment [71, 72, 73] and public health measures such
as vaccination [17, 74, 19]. Therefore, it is important to understand pathogen-pathogen
interactions and their impact on epidemiological and macro-ecological patterns. This jus-
tifies accounting for multiple strains/pathogens and their mutual interactions into math-
ematical models.

In this chapter we review some of the most common and well-studied interactions
between pathogens. We then discuss the importance of accounting for pathogen in-
teractions in epidemiology and public health, highlighting possible biases arising from
their neglect. Finally, we introduce compartmental models as well as the fundamental
mathematical tools required to describe disease spread. We devote particular attention
to the description of additional challenges that arise when accounting for multiple pa-
thogen/strains and their mutual interactions.

1.2 Interaction mechanisms

As a first approximation we may distinguish between competitive and synergistic inter-
actions. Competitive interactions play a fundamental role in shaping pathogen commu-
nities [75, 76]. Competition can arise due to limited shared resources or space. Nasal
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colonization by S. aureus has been shown for example to prevent invasion from other
S. aureus strains because of the limited amount of attachment sites [77]. Some pathogens
can also harm competitors by producing chemical compounds. S. pneumoniae for example
produces oxygen peroxide [78], which is harmful to other commensal bacteria. Finally,
some infections confer some degree of cross-immunity against other pathogens/strains,
effectively protecting the host from secondary infections [79]. Owing to their antigenic
similarity, S. pneumoniae serotypes can elicit serotype-specific cross-immunity [80, 81]. In-
fluenza strains also compete for hosts through cross-immunity; indeed, this mechanism
is a fundamental driver of recurrent patterns of seasonal influenza [82].

Pathogens may also interact in a synergistic way, facilitating their mutual spread. For
example, primary influenza infections can temporarily increase susceptibility to bacte-
rial infections by, e.g., S. pneumoniae and Neisseria meningitidis [83, 84, 85]. Within-host
mechanisms responsible for such facilitation are multiple, ranging from increased bac-
terial adherence to host cells [86] to impairment of host immune defenses [87, 88]. An-
other paradigmatic synergistic interaction between pathogens is the one between HIV
and Mycobacterium tuberculosis, which appear to fuel each other’s spread in Sub-Saharan
Africa [89, 72]. On one hand, HIV exacerbates every aspect of tuberculosis infection,
increasing also susceptibility [90]; on the other hand tuberculosis impairs highly active
antiretroviral therapy, making it difficult to treat patients co-infected with HIV and Tu-
berculosis [91].

In other cases, however, the nature of a given interaction cannot be identified as
purely competitive or purely cooperative. Let us consider for example the case of immune-
mediated cross-reactions between Dengue serotypes. Primary Dengue infections grant
full immunity against the same serotype and short-term protection against other serotypes
[92]. However, secondary Dengue infections are much more severe than primary ones,
suggesting a complex immunological scenario. Late disease enhancement may be ex-
plained by a non-linear association between cross-protection and antibody concentration,
according to a mechanism known as antibody-dependent enhancement [93]. As a con-
sequence, the nature of cross-reactive interactions between Dengue serotypes shifts from
protective to enhancing as antibody count decreases over time.

Besides interactions taking place within hosts, pathogens may also interfere at the
population level [94]. Sickness arising from some primary infection is likely to be fol-
lowed by convalescence. Owing to the reduced number of contacts, convalescent indi-
viduals are less exposed to secondary infections and they can thus be considered as being
effectively removed from the pool of susceptibles. This can hamper the spread of other
pathogens, as potential hosts are temporarily unavailable. This kind of interference has
been suggested to affect apparently unrelated diseases such as measles and pertussis,
which happen to affect the same pool of hosts (children in this case) [95]. Fatal diseases
may interfere in a similar manner, owing to the increased mortality and quarantine mea-
sures, which ultimately result in the depletion of the susceptible pool [96].
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1.3 Implications for epidemiology and public health

In the previous section we discussed several mechanisms through which two or more
pathogens can interact. We show here that interactions between pathogens can affect
their mutual spread as well as epidemic assessment and public health projections.

Interactions can affect spatial and temporal spreading patterns. Cross-protection due
to previous immunity can prevent multiple diseases to co-circulate within the same pop-
ulation; for example, past immunity to chikungunya [97] and Dengue [98] was found
to displace or reduce the size of Zika epidemics. Also, cross-protection due to seasonal
influenza has been suggested to tighten constraints on the timing of pandemics [99]. In
some cases, the depletion of the shared susceptible pool can also induce out-of-phase
relationships between diseases and alter disease periodicity [95, 100].

S. pneumoniae, S. aureus and Neisseria gonorrhoeae bacterial populations are character-
ized by a multiplicity of strains with varying profiles of antibiotic resistance. Under-
standing the mechanisms behind the emergence and maintenance of resistance in bac-
terial populations is fundamental to quantify the impact of resistance on public health.
This necessarily requires a proper accounting of the ecological factors that shape bacterial
ecosystems, including interactions among different strains [13, 14, 15, 16].

A correct interpretation of eco-epidemiological patterns is also fundamental to assess
vaccine effectiveness. Vaccines usually target only a subset of circulating strains. The
heptavalent pneumococcal vaccine (PCV7), for example, targets only 7 out of the over
90 known pneumococcus serotypes. In such cases, ignoring eventual competitive inter-
actions between target and non-target types may lead to an overestimation of vaccine
effectiveness. PCV7 resulted for example in replacement of target types by non-target
types [17, 18]. Sporadic increases in the prevalence of non-target HPV types have been
reported as well [101, 102, 103, 104], although replacement is still matter of debate [105,
106].

The burden of emergent diseases such as Zika may also depend on past exposure to
other pathogens. Zika recently emerged in the Pacific area and in South America [8],
sharing considerable geographical overlap with Dengue. Cross-reactions between Zika
and Dengue suggest that exposure to the latter may modulate Zika outbreaks by either
protecting against it or by triggering antibody-dependent enhancement [107, 108, 109,
98].

1.4 Modeling multi-pathogen interactions

1.4.1 Compartmental models

Mathematical models describing infectious disease spread date back to 1766 [110]. In his
seminal paper, Bernoulli analyzed mortality due to smallpox, discussing the beneficial
impact of prevention strategies against the disease. The foundations of modern epidemi-
ology were laid by Ross in 1911 [111], who developed the first mathematical model of
malaria transmission.
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Epidemiological models are often formulated in terms of compartments, i.e. groups
of hosts sharing similar properties such as the health status [20]. Upon certain events
like, e.g., infection and recovery, individuals transit from one compartment to the other.
Within this framework, it is possible to study the temporal evolution of a disease by
tracking the number of individuals within each compartment.

The Susceptible-Infected-Susceptible (SIS) model includes just two categories of indi-
viduals, namely susceptibles (S) and infected (I) (Fig. 1.1 A). The SIS model is character-
ized by two elementary reactions:

S + I
β−→ I + I ,

I
µ−→ S ,

(1.1)

the first reaction refers to the infection of a susceptible upon contact with an infected,
whereas the second refers to the recovery of an infected into a susceptible. Infection and
recovery occur at rates β and µ respectively. If we assume that every individual contacts,
on average, k̄ other individuals chosen fully at random, the evolution equation for the
density of infected individuals ρI(t) is given by:

ρ̇I = −µρI + βk̄(1− ρI)ρI , (1.2)

the two terms on the right side represent recovery and infection respectively. Notice
that, in the case of a closed population, a single variable, namely the density of infected
ρI , completely characterizes the state of the system. Dynamical trajectories arising from
Eq. (1.2) settle around different values as the control parameter R0 = β/µ (the basic re-
productive number) is varied. By setting ρ̇I = 0 in Eq. (1.2), we obtain two possible fixed
points, namely ρI = 0 and ρI = 1− R−1

0 . The first solution corresponds to a disease-free
state, whereas the second one corresponds to an endemic state with stationary preva-
lence. If R0 < 1 the disease dies out immediately, whereas if R0 > 1 it becomes endemic.
At R0 = 1 the model thus undergoes a dynamical transition which changes its qualitative
behavior. R0 has an important epidemiological interpretation: it is the average number of
secondary cases originating from a single infected seed in a fully susceptible population.

There is a connection between the SIS model and the theory of critical phenomena in
statistical physics. More precisely, the disease-free and endemic states can be regarded
as two distinct phases of a physical system such as a ferromagnet. According to this
analogy, the critical point at R0 = 1 can be regarded as a phase transition. Furthermore,
because total prevalence varies continuously at the transition, a physicist would denote
this phase transition as continuous or “second order".

For some diseases, recovery grants lifelong immunity, preventing re-infection by the
same pathogen. This situation is described by the Susceptible-Infected-Recovered (SIR)
model (Fig. 1.1 B), where infected individuals transit to the recovered (R) compartment.
The SIRS model describes yet another scenario, where immunity wanes over time (Fig. 1.1
C).
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FIGURE 1.1: Elementary compartmental models. Transition schemes for
(A) the Susceptible-Infected-Susceptible (SIS) model, (B) the Susceptible-
Infected-Recovered (SIR) model and (C) the Susceptible-Infected-

Recovered-Susceptible (SIRS) model.

Compartmental models that are formulated in terms of deterministic ordinary differ-
ential equations (ODE) such as Eq. (1.2) rely on a few critical assumptions. First, they
completely ignore stochasticity arising from transmission, recovery and demographic
processes. Nonetheless, stochastic fluctuations are usually negligible in the limit of large
population size (their typical magnitude is inversely proportional to population size).
Thus, the deterministic ODE approach is expected to perform well for large populations.
Second, they assume a homogeneously-mixed population where every individual has the
same probability to meet everyone else. Within the homogeneous mixing framework, the
rate of new infected cases is given by the mass-action law, as if individuals were inter-
acting chemical molecules in a well-stirred vessel. As we will see in the next chapter, the
homogeneous mixing hypothesis is a crude approximation of real contact patterns.

We can use compartmental models to describe multi-pathogen/strain systems as well.
This usually requires additional compartments. Let us consider the case of NS mutually-
excluding strains, each following SIS dynamics. Here, the number of compartments
scales linearly with NS since we have just one infected compartment per strain (plus a
compartment for susceptible individuals). In principle, this model may be characterized
by 2NS parameters, namely the NS infection rates βi and the NS recovery rates µi. Such
model may be used as a basis for more complex models. In Fig. 1.2 we show a variant of
the previous model, based on SIR dynamics instead of SIS, where infected compartments
are coupled to each other. Transitions of the kind Ii → Ij can model a whole range of pro-
cesses, including mutations and superinfection (new infections can clear previous ones).
In the original formulation of this model [112], transitions form a nested pattern where Ii

can mutate into Ij only if j > i. Here, increasing strain number i may be associated, for
example, to increasing levels of drug resistance.

If recovery grants some degree of cross-immunity, one should in principle track each
host’s immune status as well as the set of past exposures [113]. Although exact, this
approach is not amenable to analytical techniques as it requires monitoring the state of
each individual. An alternative is to adopt either a status-based or a history-based ap-
proach [114, 115, 116]. In the former case, one defines compartments which track the set
of strains a host is immune to, whereas in the second case one subdivides individuals
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FIGURE 1.2: Multi-strain compartmental model with couplings between
infected. This model features n strains following each SIR dynamics. The
model also allows for mutations between infected compartments. The fig-

ure is taken from [112].
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according to their set of past infections. While history-based models usually require a
large number of variables when NS is large – typically 2NS –, certain status-based need
much less variables in order to be fully specified. For example, authors in [117] were able
to derive a status-based model that requires just 2NS state variables. This model is based
on the assumptions that only a fraction of individuals successfully mount an immune
response upon infection and that immunity results in reduced transmissibility.

1.4.2 Ecological insights from multi-strain models

Models of multiple, interacting strains or pathogens are key to address a wealth of eco-
logical and epidemiological questions. Under which conditions do two or more interact-
ing species co-exist within a population? How common is a species relative to others?
The problem of co-existence is a central one in disease ecology and a highly non-trivial
one. Indeed, simple models of competing strains usually fail to predict co-existence [118,
13]. Rather, they predict competitive exclusion, i.e. total domination by the fittest pa-
thogen species or by the one with the largest R0. However, observed co-circulation pat-
terns of, e.g., drug-sensible and drug-resistant strains in S. pneumoniae [119, 120, 121,
122] and S. aureus [123, 124] populations, suggest the existence of mechanisms promot-
ing population-level co-existence. Mathematical models have shed light on a few pos-
sible such mechanisms. Some mechanisms favor the partitioning of strains into non-
overlapping niches, thus minimizing competition. These include, for example, reduced
mixing between host sub-groups [22, 23, 24, 25] and heterogeneity in duration of car-
riage [26]. In some cases, cross-immunity can also promote co-existence by neutralizing
fitness differences, curtailing the competitive advantage of certain strains. For example,
non-specific cross-immunity, built through multiple, consecutive carriage events, and in-
terference by Haemophilus influenzae have been suggested to promote diversity in S. pneu-
moniae serotypes by reducing differences in carriage duration [27, 28].

Multi-strain models shed light on the emergence of invading pathogens. Indeed, new
pathogens may appear in a population as a result of external importations, spillover
from an animal reservoir or mutations. In all these cases, emergence may be affected
not only by environmental and host-related factors, but also by interference with resi-
dent pathogens. Multi-strain mathematical models have been used to understand for
instance the emergence of antibiotic resistance, providing insights about factors leading
to co-existence of sensitive and resistant strains as well as their frequencies under differ-
ent treatment regimes [23]. Models also allowed studying the probability of reassortant
influenza strains developing into a global pandemic, the frequency of replacement of
circulating seasonal strains and the timing of pandemic emergence [125, 115, 126, 99].

Insights from multi-strain models can also help the design of public health interven-
tions. Multi-strain models can be employed for example to investigate the long-term
impact of vaccination on a pathogen population. In particular, mathematical models can
be used to predict post-vaccination size and composition of a pathogen population in
order to assess the risk of strain replacement [127, 128, 19].
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1.5 Open challenges in modelling multi-strain dynamics

The diversity of multi-strain interactions opens up for several theoretical challenges.
One problem of paramount importance concerns the link between within-host dynamics
and population-level models. In fact, while within-host processes drive the outcome of
strains’ interactions, accounting for the full complexity entailing such processes typically
requires high-dimensional models that hardly scale to more than a few pathogenic vari-
ants. Thus, in order to allow for tractable models, researchers make simplifying assump-
tions about disease interactions. The challenge is then to define models that represent a
compromise between tractability and realism [129].

For example, models dealing with strains that confer only partial cross-immunity
should specify how past infections affect the outcome of future exposure and/or trans-
mission events and how immunity is built over time [114, 117, 115, 116]. As already
discussed, a full description of such a system would amount to monitoring both the im-
mune status and history of each host [113]. Here, model reduction is possible only under
specific assumptions about strain interactions.

Not all interaction mechanisms have drawn equal attention in the literature. In fact,
because interactions among strains are typically based on assumptions, most works have
focused so far on just a few outcomes of multiple infections, notably co-infection and
super-infection. Authors in [130, 131] have shown however that, even in the case of just
two co-circulating pathogens, within-host dynamics can give rise to a large number of
outcomes after simultaneous or sequential inoculations with different pathogens. The
population-level impact of such infection patterns remains largely unexplored and thus
calls for further research work.

Authors in [129] have also pointed out the importance of incorporating heterogeneities
in host population structure within multi-strain models. In this thesis we elaborate on
this aspect and make extensive use of individual-based and spatially-structured mod-
els in order to assess the impact of the heterogeneous host behaviour on the ecology of
interacting strains.
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Chapter 2

Epidemics on Networks

2.1 Introduction

Compartmental models are pervasive in mathematical epidemiology [21, 20]. As seen
in Chapter 1, this mathematical framework allows fundamental understandings about
factors driving epidemic spread and enables the investigation of outbreaks and the mod-
eling of incidence data for a wide range of diseases [132, 133, 134, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145]. However, compartmental models make several simplifying
assumptions, e.g. homogeneous mixing (Fig. 2.1 A), which may represent a limitation in
some cases.

Network epidemiology provides the right framework to account for the complex-
ity entailed by contact structure and epidemic dynamics. Within this framework, hosts
are represented as nodes in a network while their mutual connections are represented
by edges (Fig. 2.1 B). During recent years we have witnessed significant advances in
network epidemiology, supported by an increasing amount of data and theoretical ad-
vances [29]. Advanced technology has improved our ability to track individual activity,
yielding a high throughput of data about different kinds of social interactions, e.g. face-
to-face proximity [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42] and sexual encounters [43, 44,
45], and human movements [46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. Theoretical development
has allowed dealing with several types of heterogeneities emerging from these data, as
well as novel frameworks to model complex network architectures, e.g. multi-layer net-
works [146, 147, 148, 149, 150, 151]. More recently, the availability of time-stamped con-
tact data sparked substantial interest in temporal networks, where nodes and edges vary
in time (Fig. 2.1 C) [152, 153, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 154, 155, 156, 157, 158].

At the same time, the theory of epidemic processes on networks has progressed as
well [29]. Several mathematical frameworks have been proposed [159, 160, 161, 162, 163,
164], allowing for a comprehensive understanding of the role of network structure and
dynamics on epidemic spread. Some of the most important analytical results concern the
epidemic threshold [165, 166, 160, 167], prevalence [161, 168, 169, 170, 171, 172, 173] and
immunization protocols [174, 175, 176, 177, 178, 179]. Several works have addressed the
dynamics of interacting pathogens on networked populations. Particular attention has
been devoted to a small set of interactions, namely cross-immunity [57, 58, 59], mutual
exclusion [60, 63, 64] and increased susceptibility [65, 66, 67, 68], and different network
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substrates have been considered, including multi-layer [69, 70] and metapopulation net-
works [61, 62]. Research work in this direction is however at the beginning. Indeed, the
majority of works deal with just two pathogens that either compete or cooperate.

This chapter is organized as follows: in Section 2.2 we give an overview of main
sources of networked data that are relevant for epidemic spread. In Section 2.3 we in-
troduce basic network concepts and tools. In Section 2.4 we turn our attention to the
mathematical description of epidemic dynamics on networks. Finally, in Section 2.5 we
review the literature about multi-strain/pathogen dynamics on networks, describing the
outcome of competitive and cooperative interactions.

2.2 Network data in epidemiology

Early studies of human contacts originated in the context of social science in order to
better understand human behavior and social relationships [180]. Contact data from dif-
ferent studies may display different levels of detail. For example, a few studies yield only
summary statistics about respondents, e.g. their number of individual contacts [181]. In
other studies, respondents are asked to report also about characteristics of their acquain-
tances. Age information, for instance, is often reported [182, 183, 184], and may be used
to inform mixing rates in age-structured models [185]. Finally, studies carried at the indi-
vidual level sometimes report on the identity of respondents’ acquaintances, potentially
enabling the reconstruction of the underlying contact network [44, 186, 30].

Early attempts to measure individual contacts were based on contact-tracing [187,
188, 189, 190, 191, 192, 182, 44, 193]. The latter aims to identify potential transmission
routes by asking subject individuals to report on their past relationships. Contact-tracing
is also a standard control tool used, for example, to identify asymptomatic infected in-
dividuals in the case of sexually transmitted diseases [194, 195, 196, 192]. Another tra-
ditional approach relies on contact diaries [186, 183, 184, 197]: respondents receive a
personal diary in order to progressively record their contacts.

Recently, advances in communication technologies allowed measuring contacts with
unprecedented temporal and spatial resolution. For example, a recent experimental setup
makes use of dedicated sociometric sensors based on Radio Frequency Identification
(RFID) technology [31]. RFID devices act as beacons which periodically broadcast a sig-
nal that is eventually “listened" by neighboring RFIDs. Whenever two RFID sensors
successfully reach each other, a Close Proximity Interaction (CPI) is automatically regis-
tered. Experimenters can manually tune the strength of the signal, thus selecting only
social interactions occurring within a given radius from the sensor. RFID devices have
been used in different settings, such as schools [32, 33], conferences [34], museums [35],
workplaces [36], households [37, 38] and hospitals [39, 40, 41, 42]. Other technologies
include Bluetooth and/or WiFi signals in mobile phones [154, 155, 156, 157, 158].

The importance of contacts is becoming increasingly recognized in hospital settings,
as evidenced by the increasing amount of studies accounting for contact networks [198].
These works have focused on the properties of network structure, the epidemiological
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FIGURE 2.1: Homogeneously mixed vs networked populations. (A) Ho-
mogeneously mixed population. Here every individual has the same prob-
ability to meet everyone else. White, red and yellow circles represent dif-
ferent kinds of individuals, e.g. susceptible, infected and recovered indi-
viduals in a SIR model. (B) Static contact network. Here every individual
is in direct contact with a sub-set of individuals of the whole network. (C)
Temporal contact network. Contacts can change from one snapshot to the

next one.
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relevance of measured contacts and on the impact of contact structure on epidemic spread
and prevention and control strategies [199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 41,
42, 209, 210]. On a different scale, increasing attention is devoted to networks of hospitals
linked by patient transfer [211, 212, 213, 214, 215].

Further network data is becoming available about human mobility at multiple scales.
Air traffic data, for instance, encodes information about long-range movements and is of
direct importance for understanding the rapid spread of pandemic diseases [216, 217].
At a shorter scale, census data provides information about commuting trips between
neighboring locations. Regional patterns of seasonal influenza [218] and measles [219]
have been studied in relation to commuting patterns. More recently, massive data about
mobile phone calls provided unique opportunities in the study of human mobility [54,
55]. Indeed, call data records enabled remarkable insights not only about properties of
human behavior [53, 52], but also about the impact of human mobility on the spread of
several diseases, including malaria [220, 221], cholera [222, 223] and HIV [224].

2.3 Network analysis

2.3.1 Basic definitions

We can represent a network as a set of nodes joined by edges. We will denote an edge
between nodes i and j with (i, j). If edges have a direction associated to them, the graph
is said to be directed and we must distinguish between the edges (i, j) and (j, i). In
principle, a graph can contain multiple edges between two nodes (multi-edges) and self-
loops, i.e. edges connecting a node to itself. Because this work is mostly concerned with
contact networks, we will not consider self-loops and multi-edges.

We say that an undirected network is connected if there exists a path (i.e. a set of
subsequent edges) joining any pair of nodes. Else, the network is made up by multiple
components. Empirical networks are usually characterized by a large component, also
known as the giant connected component, that includes most of the nodes, plus a number
of smaller components.

Edges in a graph may be additionally characterized by a weight wi,j. In this case, the
graph is said to be weighted. The weight wi,j may represent, e.g., the cumulative duration
of a contact, or the number of passengers traveling from one location to the other.

There are multiple ways to represent a static graph. A possible choice is the adjacency
matrix A, whose elements take values Ai,j = 1 if nodes i, j are connected and Ai,j = 0
otherwise. Notice that the adjacency matrix of an undirected graph is always symmetric.
The adjacency matrix is of considerable theoretical interest since many network quanti-
ties can be directly written in terms of A. For example, the diagonal elements of the l-th
power of the adjacency matrix, namely (Al)i,i, count the number of closed trajectories of
length l starting and ending in the same node. Also, the spectral properties of A deter-
mine key features of dynamical processes over networks, including epidemic spread.
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FIGURE 2.2: Degree distributions in synthetic and empirical contact net-
works. Here we show the complementary cumulative degree distribu-
tion for a scale-free network with γ = 2.5 (red), for a homogeneous net-
work with a Poisson degree distribution and with the same average degree
(black) and for an empirical network of sexual contacts among sex work-
ers and their clients (orange) [45]. The maximum degree in the scale-free

network has been clipped to
√

N.

2.3.2 Topological properties

The number of neighbors of a node is termed degree. An important quantity in a graph is
the degree distribution P(k), i.e. the frequency of nodes with degree k. In many empirical
networks P(k) is broad (spanning several orders of magnitude, as shown in Fig. 2.2 for
a network of sexual contacts (orange)) and has a large variance. These networks are
often modeled with a power-law degree distribution P(k) ∝ k−γ. In Fig. 2.2 we compare
two different networks with a Poisson (black) and a power-law (red) degree distribution
respectively. The former is characterized by a small range of values, indicating that most
nodes have a degree concentrated around the average, whereas the second distribution
extends to way larger values. Networks whose degree distribution follows a power-law
with exponent γ in the range 2 < γ < 3 have been dubbed “scale-free" networks [225].
In this case, the second moment k̄2 becomes divergent. Strictly speaking, this is true
only in the limit of infinite network size; in real networks k̄2 is necessarily finite because
the maximum degree is bounded by network size. An important feature of scale-free
networks is the presence of large hubs, i.e. highly connected nodes.

An important quantity for epidemic spread is the conditional probability to reach
a node with degree k by following an edge emanating from a node with degree k′. In
absence of degree correlations, the conditional probability is equal to P̃(k) = kP(k)/k̄.
Notice that P̃(k) is shifted towards nodes with a larger degree since it is more likely for
a randomly selected edge to lead to a hub than to a peripheral node. As a consequence,
its first moment ∑k kP̃(k) = k̄2/k̄ is larger than k̄. This observation lies at the heart of the
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friendship paradox, which states that your acquaintances are on average more connected
than you are.

Networks may display additional mesoscopic properties that may affect dynamical
processes unfolding on them. It is common in empirical networks to observe commu-
nities, i.e. groups of nodes that are highly connected internally while sharing only a
few links between each other [29]. Such a modular organization can arise for multiple
reasons. In hospitals, for example, community structure may be induced by the orga-
nization into wards [41]: two patients assigned to the same ward may be more likely
to engage in contact compared to patients belonging to different wards. In this case,
inter-community links are likely to be mediated by health-care workers [210], specially
peripathetic ones [226]. Community structure has been shown to hinder spread in simple
epidemic models. It has been shown for example to reduce the epidemic threshold [227],
to slow down spread [228] and to reduce final outbreak size in SIR dynamics [229, 230]

2.3.3 Temporal networks

Some networks are not static but rather evolve in time. Contact networks represent a
typical example since the very nature of human contacts is transitory. It is important
to distinguish between contacts and edges. The former indicate an interaction between
two individuals occurring at some point in time, whereas an edge indicates whether two
individuals have ever interacted. There exist several ways to represent both continuous-
and discrete-time temporal networks [153, 231]. For example, a discrete-time temporal
network can be represented by a sequence of static graphs {G1, . . . , GT}. Each graph Gt

can be seen as a snapshot of a time-varying network at time step t, as depicted in Fig. 2.1
C.

The temporal dimension brings in substantial theoretical challenges. For example,
most metrics that are standard in the analysis of static networks cannot be generalized
to temporal networks in a straightforward manner [232]. In addition, some properties of
temporal networks do not have a counterpart in static networks. For example, the very
nature of temporal networks reflects a causal structure that is nowhere present in static
networks. Let us elucidate the implications of causality on disease spread by considering
a small temporal network with just three nodes, labeled by v1, v2, v3 and depicted in
Fig. 2.3 A. Here, node v1 can infect v3 in two steps: first v1 infects v2 at time t, and in
turn v2 infects v3 at time t + 1. Infection can travel from v1 to v3 because there exists
a time-respecting path joining them. Notice that v3 cannot infect v1 because there is no
time-respecting path starting in v3 and ending up in v1. If we were to collapse the two
snapshots in Fig. 2.3 A onto a static aggregated graph (see Fig. 2.3 B), causality would be
lost and the disease would instead be able to propagate from v3 to v1.

Temporal networks can also exhibit additional sources of heterogeneity compared to
static graphs. For example, empirical studies revealed that both nodal and edge contact
activities are bursty [233], i.e. they display bursts of contacts followed by long periods
of inactivity. This is evident from the distribution of inter-contact times (ICT), i.e. the



2.3. Network analysis 17

FIGURE 2.3: Time respecting paths and causality in temporal networks.
(A) shows two consecutive snapshots of a temporal network with just three

nodes. (B) shows the corresponding aggregated graph.

FIGURE 2.4: Homogeneous vs heterogeneous ICT distributions. In
(A) we compare two inter-contact time distributions, an exponential one
(black) and a power-law one with exponent 2.1 (red). The two distribu-
tions share the same average value. Two contact sequences sampled from
each inter-contact time distribution are shown in panels (B) and (C) respec-

tively.

time elapsed between two successive contacts, which is usually heavy-tailed rather than
exponential, as exemplified in Fig. 2.4.

The mathematical treatment of epidemics on networks often relies on some time scale
separation argument, i.e. it is often assumed that the network and disease dynamics
evolve on different time scales. For some temporal networks, however, time scale sep-
aration may not hold as contacts might evolve on a time scale comparable to that of
the pathogen [152, 234, 235, 236]. Recently, authors in [167, 237] have developed a gen-
eral mathematical framework for the computation of the epidemic threshold in arbitrary
time-varying networks.

2.3.4 Null models

Often, we are interested in assessing the impact of a single network property, e.g. de-
gree heterogeneities or community structure, on a given dynamical process. A popular
approach to isolate the role of specific network properties is based on random reference
models (RRM) [153, 238]. In their essence, RRMs consist in randomization schemes that
aim at destroying one or more properties of a given network. If a given dynamical pro-
cess is driven by any of these properties, it is likely that it will differ substantially in the
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original network and in the corresponding RRM. This can be checked directly by com-
paring the realizations of the dynamical process of interest on both the original network
and its randomized version.

In weighted static networks, for example, the role of network topology can be high-
lighted by setting all weights to the average weight value while retaining existing edges.
This approach has allowed the assessment of the impact of topology of air travels on the
predictability of large-scale outbreaks [239].

RRMs have proven to be particularly useful also in the context of temporal networks.
A convenient temporal RRM consists in completely randomizing all contacts by redis-
tributing them over the existing edges. This procedure preserves the topology of the
network but destroys any kind of temporal structure. Another scheme consists in per-
muting the order of network snapshots. This procedure not only preserves the topolog-
ical and aggregated properties of the network but also the strength of each edge’s and
each node’s activity, while destroying temporal correlations. RRMs that preserve the ICT
history of single edges or the global ICT distribution have also been considered in the
literature [240]. As pointed out in [241] however, most of these RRMs inevitably alter
the turnover of edges and nodes, which in turn is a key property for spreading pro-
cesses [242]. Thus, if a temporal network is characterized by a strong turnover of nodes,
RRMs that preserve this property should be preferred [241, 243].

2.3.5 Generative models

The null-model approach can be identified as “top-down" since it consists in the progres-
sive removal of selected structures from an original network. However, detailed network
data may not be fully available in some cases, except perhaps for a few aggregated quan-
tities (e.g. a list of individual degrees). There are also cases where we might want to
investigate a specific network property in isolation and in a controlled manner. In both
cases we may follow a “bottom-up" approach by specifying a generative model, i.e. a set
of algorithmic rules able to produce synthetic graphs displaying a few desired properties.

The Erdős-Rényj (ER) model, or Poisson random graph, is a well-studied generative
model for static networks. It is defined as follows: given a set of N nodes, each of the (N

2 )

possible distinct edges is present with probability p, independently from each other. It
follows that the degree distribution of an ER graph is binomial, i.e. P(k) = (N−1

k )pk(1−
p)N−1−k and the average degree is given by k̄ = p(N − 1). If network size is large,
we can approximate the degree distribution with a Poisson distribution P(k) = k̄ke−k̄/k!.
Despite its simple definition, ER graphs display several non-trivial properties often found
in empirical networks: they can exhibit for instance a giant connected component and the
so-called small-world property, which amounts to a logarithmic scaling of the average
path length with N. The ER model is however not suited to describe most real-world
networks because of the Poissonian degree distribution, which fails at capturing degree
heterogeneities across nodes.

Degree heterogeneities can be introduced by means of another generative model: the
configuration model. The recipe consists in first assigning to each node i a number of
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half-edges (stubs) ki sampled from the desired degree distribution P(k). Given the de-
gree list {ki}i=1,...,N , we form edges by joining the stubs at random. The configuration
model yields by definition networks with custom degree distribution and with no degree-
degree correlations. By choosing P(k) ∝ k−γ it is thus possible to generate heterogeneous
networks with power-law degree distribution.

Additional mesoscopic structures, such as communities, can be included by modify-
ing the configuration model algorithm. First we assign a group membership bi to each
node, where bi = 1, . . . , B and B is the total number of groups. Then, once the stubs
have been assigned, we design a random fraction pin of stubs as within-group stubs.
During the matching procedure within-group stubs will be matched with other within-
group stubs from the same community. The remaining stubs will be directed to nodes in
different communities.

For time-varying networks a paradigmatic generative model is the activity-driven
(AD) model [234]. It describes a population of N agents, each characterized by a different
activity rate ai which measures its propensity to create contacts. Usually, the activity rate
is sampled from some distribution f (a). During each time step (of duration ∆t), each
agent activates with probability ai∆t and establishes m contacts directed at randomly
chosen individuals. Contacts last for a single time step. Individual activity rates de-
fine additional time scales over which network connectivity varies. The AD model thus
provides a way to investigate the role of network time scales on epidemic spread in a
controlled manner.

The AD model accounts for contact heterogeneities across individuals while result-
ing in geometrically distributed inter-contact times for each single node. However, it
has been observed in networks of contacts and phone-calls that individual activities are
bursty [233]. A model that yields networks with such properties has been proposed
in [244]. The recipe consists in directly sampling nodal activation times from a heavy-
tailed distribution [244] instead of using a constant activation probability.

2.4 Epidemics on networks

2.4.1 Static networks

The impact of degree heterogeneities on epidemic spread can be better understood in the
context of Heterogeneous Mean Field (HMF) theory [160]. HMF assumes that individuals
with the same degree are equivalent. It is thus customary to subdivide individuals into
different connectivity classes Ck indexed by their degree k. Let us define the fraction ρk

of infected individuals within degree class Ck. For the SIS model, and in absence of any
degree-degree correlation, the quantities ρk satisfy the following differential equations:

ρ̇k = −µρk + βk(1− ρk)∑
l

lρl P(l)
k̄

, (2.1)

where the first and the second term on the right represent infection and recovery respec-
tively. Notice that the infection term is given by a sum of contributions from each degree
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class, weighted by their degree and the frequency of nodes with that degree. Eq (2.1)
admits a disease-free state (DFS) as well as an endemic state. The epidemic threshold can
be determined by evaluating Eq. (2.1)’s Jacobian matrix in the DFS:

J DFS
k,l =

∂ρ̇k

∂ρl

∣∣
{ρk=0} = −µδk,l +

βklP(l)
k̄

, (2.2)

and computing its largest eigenvalue, which reads βk̄2/k̄− µ. Successful spread occurs
whenever this last quantity is positive, i.e. if:

β > µk̄/k̄2 . (2.3)

As discussed earlier, k̄2 diverges in scale-free networks with degree-exponent γ in the
range 2 < γ < 3; in this situation, HMF predicts a vanishing epidemic threshold.

While large attention has been devoted to the epidemic threshold, a few works have
focused on the endemic state [30]. Further insights about the role of degree hetero-
geneities can be obtained by investigating the endemic state. In this case, the stationary,
non-zero value of ρk satisfies:

ρk =
βkΘ

µ + βkΘ
, (2.4)

where Θ = ∑k kρkP(k)/k̄. Θ can be found self-consistently by plugging Eq. (2.4) inside
its own definition. Eq. (2.4) implies that large-degree nodes (hubs) are highly vulnerable
to epidemic spread since ρk approaches 1 as k increases. This result suggests that hubs
are responsible for the vanishing epidemic threshold owing to their vulnerability to epi-
demics. Furthermore, their large connectivity makes them acting as super-spreaders [245,
246, 247, 248]. The HMF framework is not limited to the SIS model and can be generalized
to more complex models [249].

2.4.2 Temporal networks

HMF can be adapted to the AD model of time-varying networks in order to understand
the impact of heterogeneities in activations on epidemic spread [234]. Paralleling the
discussion about degree heterogeneities, we first subdivide hosts into activity classes.
Once this division is made, we may write down a closed set of equations for ρ(a):

ρ̇a = −µρa + βm(1− ρa)[a
∫

da′ρa′P(a′) +
∫

da′ρa′P(a′)a′] , (2.5)

where we can again recognize the recovery and infection terms. The latter is given by
two contributions: the first corresponds to susceptible nodes with activity a becoming
active and contacting nodes that are already infected, whereas the second contribution
comes from already infected nodes becoming active (at their corresponding rate a′) and
contacting susceptible nodes in class a. The epidemic threshold is obtained analogously
as in the HMF framework, yielding the following condition for spreading:
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β >
µ

m
2ā

ā +
√

ā2
, (2.6)

where ā, ā2 are respectively the first and second moments of the activity distribution.
As in the case of degree heterogeneities, variability in host activation patterns facilitates
epidemic spread by lowering the epidemic threshold. If the activity distribution is heavy-
tailed, i.e. it decays as a−γ with 2 < γ < 3, the epidemic threshold vanishes. In the AD
model, nodes with a large activity rate play the role of hubs.

Bursty contact behavior, induced by, e.g., a power-law ICT distribution, has been
shown to impact the speed of spreading processes [250, 251, 244, 252]. Whether the ef-
fect is a speed-up or a slow-down is a complex question whose answer depends on the
short-time behavior of the ICT distribution as well as on network topology [252].

2.5 Multi-strain dynamics on networks

2.5.1 Competitive interactions in SIS dynamics

Compared to the large effort on single-pathogen models, less attention has been devoted
to the joint spread of multiple interacting pathogens/strains on networks [29]. Moreover,
most works have focused on just two pathogenic agents that either compete or cooperate.

In the case of SIS dynamics, the focus is on understanding the impact of network
structure on co-existence and dominance. Under the assumption of mutual exclusion,
two pathogens that both follow SIS dynamics cannot stably co-exist on static networks
if they differ in terms of R0 [253]. Indeed, the theory predicts that the pathogen with
the largest R0 drives its competitor to extinction, in agreement with the principle of
competitive exclusion. The case of competitors with the same R0 is quite special, since
HMF predicts a whole family of co-existence equilibria [60]. This mean-field prediction,
however, is fundamentally altered by stochasticity, as highlighted by numerical simula-
tions [64]. An analysis of the average co-existence time, i.e. the time until extinction of
either competitor, reveals a linear scaling with population size [254]. Thus the average
co-existence time is much shorter than the average extinction time for a single pathogen,
which scales exponentially with population size. Also, whenever the extinction of either
strain is forbidden, by e.g. preventing the last infected node of either type from recov-
ering, a strong dominance behavior is observed, with the two strains taking turns as the
leading competitor. The domination time distribution takes the same functional form,
namely a power-law with an exponential cutoff, for different networks. The cutoff po-
sition and the average domination time depend on network topology; in particular, the
star graph (a network consisting in N − 1 peripheral nodes with a single connection to a
central hub) features longer domination times compared to ER and scale-free graphs [64].

Other studies focus on the case of a newly injected strain in a population where a
wild-type is already endemic [63, 255]. These works have shown that contact structure
affects the emergence probability of the invader. For example, authors in [63] found
that the invader may not invade even if it has the largest R0. Moreover, they found
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that contact heterogeneities reduce the emergence probability compared to homogeneous
mixing. This result stems from a hub-holding effect: when the invader appears, most
hubs are likely to be already infected by the wild-type, reducing the spreading potential
of the mutant. This hub-holding effect is closely related to the friendship paradox since
the “patient zero" carrying the initial mutant seed is likely to be be connected to one or
more hubs. The same authors also reported the limited role of triangles, i.e. groups of
three connected nodes, on the emergence probability. This may be explained by the fact
that edges that are involved in triangles direct to nodes that are already infected by the
wild-type and can thus be considered as “wasted" edges.

Co-existence of mutually-excluding pathogens is instead possible if the two diseases
spread on different layers of a multi-layer network [256]. A multi-layer network can
be seen as a sequence of distinct network topologies (the layers), sharing the same set
of nodes. Each layer may represent for example a different transmission route, e.g. di-
rect contact or transmission through a vector. A necessary condition for co-existence of
mutually-excluding diseases spreading on two distinct layers is that the two layers must
have different contact structures, i.e. different sets of edges (if this were not the case, the
graph would behave as a single-layer network, and co-existence would not thus be pos-
sible). Provided that the two layers are different, co-existence is possible only within a
range of transmissibility values. In practice, if the two pathogens have transmissibilities
β1, β2 respectively, pathogen 2 spreads only if βsurv(β1) < β2 < βdom(β1), where βsurv,
βdom are the survival and the domination thresholds. Below βsurv, pathogen 2 dies out,
while above βdom it outcompetes pathogen 1. Importantly, both the survival and domi-
nation thresholds are not simple constants but depend on pathogen 1’s transmissibility.
Interestingly, the co-existence region becomes wider if the two layers are negatively cor-
related, as confirmed also by [70], in which the more general scenario of reduced suscep-
tibility and reduced infectious period is discussed.

Heterogeneous contact behavior coupled with sequential monogamy has been shown
to enable long-term co-existence of two mutually excluding pathogens with different ba-
sic reproductive numbers in a dynamical network of sexual contacts [56]. Moreover, the
repartition of hosts into low-risk and high-risk groups favors dominance of pathogens
with different traits in each group: a fast, highly transmissible pathogen dominates in
the high-risk group where hosts have many potential partners and change partner often,
whereas the slower pathogen dominates in the low-risk group, where sexual ties persist
for a longer time.

2.5.2 Competitive interactions in SIR dynamics

In the case of SIR dynamics, the focus is on whether two diseases can cause similar-sized
outbreaks or not. In particular, two main scenarios have been considered, corresponding
to the two pathogens spreading either sequentially or concurrently. In the former case,
authors in [57] showed that there exists an intermediate range of transmissibility values
for the first pathogen such that both competitors can infect a significant fraction of the
network. On one hand, if the first pathogen is not transmissible enough, it will not spread
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in the first place. On the other hand, if the first pathogen has a too large transmissibility,
it will reach and immunize most nodes, leaving behind a fragmented residual network of
susceptibles. Thus, the second pathogen will not be able to propagate even if it has a large
transmissibility. Network structure affects vulnerability to sequential invasions; it has
been shown for example that networks with larger degree variance are more vulnerable
to subsequent invasions [59].

Authors in [69] generalized these results to the case of partial cross-immunity, with
the two pathogens spreading on different network layers. They found that increasing
degree heterogeneities makes the whole network more resilient to further outbreaks if
degrees are positively correlated across the two layers. Degree heterogeneities, however,
can also make the system more vulnerable if correlations are negative or absent.

In the case of strains spreading concurrently, the situation is more subtle [58]. Never-
theless, whenever the two strains have different spreading rates, their respective dynam-
ics will unfold on distinct time scales, as if they were invading sequentially. This means
that arguments from the sequential case can still be used to recover the phase diagram.
Interestingly, the two pathogens can both reach a finite fraction of the nodes if and only
if the faster pathogen generates more cases per unit time than the slower one, while not
being too transmissible (otherwise it would disrupt the residual network of susceptibles).

By modeling two pathogens competing on a metapopulation network it was found
that different pathogens traits may be selected by host mobility: high mobility favors the
faster pathogen, whereas low mobility favors the slower one [61, 62].

2.5.3 Cooperative interactions in SIS dynamics

The case of two mutually cooperative SIS processes has been studied thoroughly in the
literature [65, 68, 257]. The phenomenology of cooperative contagion can be illustrated
through the following paradigmatic model, as shown in Fig. 2.5: let us consider two
pathogens, which we denote with A and B, that both follow SIS dynamics. A, B share
for simplicity the same recovery rate µ and the same transmission rate β. In this model,
co-infection with A, B is possible. Individuals that are already infected by either A or B
are subject to increased risk of contagion by the other pathogen. More precisely, singly
infected individuals are C > 1 times more susceptible to further infections compared
to fully susceptible individuals. Cooperative interactions can affect the nature of the
epidemic transition compared to the single disease case: if C is sufficiently large, the
transition from the disease-free to the endemic state becomes discontinuous in terms of
prevalence, as depicted in Fig. 2.6. Abrupt transitions underpin a possible threat to pub-
lic health since a small increase in transmissibility can lead to large outbreaks. Moreover,
stability analysis reveals a bistable region in parameter space where the disease-free and
the active states are simultaneously stable. Within this region, the final outcome will be
either extinction or co-circulation depending on the actual initial conditions. Bistability is
also reflected in the hysteretic behavior of the system: if one introduces a small infectious
seed, e.g. a single doubly-infected individual, and progressively increases transmissibil-
ity β, a large-scale outbreak will occur at some value βc, i.e. at the epidemic threshold.
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Instead, if the system is initially prepared in the endemic state (the upper line in Fig. 2.6)
above the epidemic threshold, progressively reducing β will not result in an epidemic
die-out at βc. Rather, extinction will occur past another threshold βe < βc. βe can be
interpreted as the eradication threshold, which represents a distinct concept from that of
the usual epidemic threshold βc. Lowering β below βc surely reduces prevalence, but it
does not allow to get rid completely of the infection. The fact that βe is smaller than βc im-
plies that once cooperative pathogens give rise to an outbreak, the effect of intervention
strategies will be limited and more resources will be required to achieve full eradication.

2.5.4 Cooperative interactions in SIR dynamics

Cooperative contagion through increased susceptibility has been widely studied also in
the context of SIR dynamics [66, 67, 258]. Even in this case, the transition from the disease-
free state to the endemic state becomes discontinuous if C is sufficiently large. Simula-
tions on various network topologies revealed however that the nature of the transition
highly depends on the underlying contact structure [66, 67, 258]. Discontinuous transi-
tions have been found for instance in 4d lattices, ER [67] and scale-free networks with
degree exponent larger than 3 [258], but not on trees and scale-free networks with de-
gree exponent smaller than 3. It has been conjectured that a key element to explain the
discontinuous jump in prevalence is the relative abundance of long cycles compared to
short ones [67]. This argument explains why the transition is continuous on trees, which
do not possess any cycle, but it is discontinuous on ER networks, which indeed contain
long cycles while being locally tree-like.

We conclude by mentioning a few works dealing with both competitive and coop-
erative interactions. Authors in [70] considered a model where two pathogens interact
though multiple mechanisms, e.g. altered transmissibility, susceptibility and infectious
period during co-infection. Different interaction mechanisms can be either competitive
or cooperative according to parameter values. Many results that we reviewed in this
section represent limiting cases of this general model.

Temporal properties of contact structure can affect the nature of the transition as well.
Authors in [259] found a discontinuous transition in a temporal network of contacts in
a hospital, but this was not the case for a related network null model. This result sug-
gests that temporal correlations can drive abrupt transitions in cooperative contagion on
temporal networks.

2.5.5 Multiple pathogens on networks

A few works have investigated the impact of network structure on the maintenance of
diversity in large multi-strain assemblies [260, 261]. Authors in [261] considered for ex-
ample a “bit-string" epidemic model [262] where each strain is associated to a different
genotype out of 2n possible configurations, where n is the number of different loci. Com-
petition is mediated by cross-immunity, which is assumed to be strongest between similar
strains. They found that networked contacts promote diversity with respect to random
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FIGURE 2.5: Cooperative contagion compartmental model. In this model,
infected individuals can be in either one of 4 states, i.e. susceptible, in-
fected by either strain A or B, or co-infected with A and B. Singly infected
individuals are C > 1 times more susceptible to further infections com-
pared to susceptible individuals. Both singly and doubly infected individ-
uals transmit the disease(s) at rate β. Recovery from each disease occurs at

rate µ.
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FIGURE 2.6: Discontinuous transition and hysteresis in cooperative con-
tagion Solid lines represent stable branches, while dashed lines indicate
discontinuous jumps. If the system is prepared in the disease-free state
and β is increased past the epidemic threshold βc, a discontinuous transi-
tion to an endemic state is observed. Instead, if the system is prepared in
the endemic state (the positive branch) and β is progressively reduced, the
disease will be eradicated only below the eradication threshold βe. Here

we set µ = 1 and C = 6.

mixing [263]. This result stems from the localized nature of contacts, which enables local
strain clusters to occupy different parts of the network. The role of mesoscopic structures,
in particular community structure, has been investigated as well [260]. More precisely,
it has been found that community structure plays a limited role on the maintenance of
diversity, unless inter-community connections are assumed to be extremely sparse.

Other works have focused on the impact of network structure on pathogen phylogeny
rather than on macro-ecological patterns [264, 265]. Authors in [265] simulated the spread
of a strain population on several contact networks, and measured the resulting phyloge-
netic tree. Degree heterogeneities were found to alter the shape of phylogenetic trees
when contact structure is static in time, in agreement with [264]; however, this effect is
eroded when contacts are allowed to vary in time.

Multi-strain models have been used to study the evolution of pathogen traits such as
virulence and infectious period. Evolutionary trade-offs between epidemiological traits
have been studied in the context of spatially-structured populations [266, 267, 268, 269].
There, it was found that limited parasite dispersal can select for reduced virulence and
transmission rate in order to reduce local competition for susceptible hosts [268]. While
these results have been obtained for two-dimensional lattices, similar arguments hold
also for contact networks [270]. Authors in [269] showed that the impact of spatial struc-
ture and dispersal depends also on the actual compartmental structure and additional
epidemiological factors, e.g. the magnitude of disease-induced increased mortality. They
found for example that spatial structure selects for lower virulence in SIRS dynamics,
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making pathogens more “prudent". In SI dynamics with disease-induced mortality, how-
ever, virulence may evolve to larger values than those predicted by non-spatial theory.
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Chapter 3

Host Contact Dynamics and
Diversity in Pathogen Strains

3.1 Introduction

In Chapter 1 we learned that interactions between pathogens can affect their mutual
spread. Indeed, competition for hosts due to, e.g., mutual exclusion or cross-immunity,
represents an important ecological driver in populations of polymorphic bacteria such as
S. aureus, S. pneumoniae and N. meningitidis [79, 27, 75, 76]. Thanks to advances in genomic
techniques, our ability to reconstruct bacterial communities has substantially improved
during recent years, revealing remarkable ecological diversity in pathogen strain popu-
lations.

A central ecological question concerns the processes that give rise to observed macroe-
cological patterns. In the context of multi-strain systems, observed patterns of co-existence
and dominance result from the complex interplay of an array of concurrent factors, rang-
ing from heterogeneous strain characteristics to host-related factors [271].

In Chapter 2 we reviewed properties of host-to-host contacts and their impact on epi-
demic spread. However, despite the large number of works on single- and two-strain
models, there has been little effort to investigate the role of contacts on the ecology of
large strain assemblies. The latter problem is addressed in my first article, entitled “Host
contact dynamics shapes richness and dominance of pathogen strains” [1]. In this work we
investigated the impact of host contact heterogeneities, community structure and host
length of stay on a population of epidemiologically equivalent strains. More in detail,
we simulated multi-strain dynamics on synthetic time-varying networks, characterizing
simulated ecosystems through ecological indicators. Our results indicate that contact
heterogeneities reduce species richness and favor the appearance of dominant strains,
while community structure has the opposite effect (although weak). We also show that
host length of stay affects strain richness in a non-monotone manner as a consequence of
the interplay between host turnover and strain competition. Then we consider S. aureus
ecology as a case study, leveraging on a combined dataset of S. aureus carriage and face-
to-face interactions in a French hospital obtained in the context of the I-Bird (individual-
based investigation of resistance dissemination) experiment [41]. We show that our par-
simonious model, together with contact data, can explain part of variability in S. aureus
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diversity in a long-term care facility. Our results suggest that host contact structure can
affect strain ecology and its accounting into epidemic models may be important for the
interpretation of epidemiological and ecological properties of multi-strain systems.

This chapter is structured as follows: in Section 3.2 we introduce tools and concepts
from community ecology that we shall use to describe the dynamics of multiple inter-
acting strains. In Section 3.3 give an overview of S. aureus ecology, as it represents an
important case study in this chapter, and introduce the I-Bird experiment. Section 3.4
contains my first paper associated to this thesis. Additional results complementing the
main analysis are reported in Section 3.5. In particular, we further characterize strain
ecology through additional ecological measures, namely the domination time and the at-
tack rate. Moreover, we investigate the impact of contact burstiness on strain ecology.
First, we extend the family of generative network models considered in Section 3.4 in
order to accomodate for generic ICT distributions other than the geometric one. Then we
show numerically that bursty activation patterns (induced by a power-law ICT distribu-
tion) affect diversity in a way that is similar to contact heterogeneities. In Section 3.6 we
relax the assumption of neutrality and consider strains with varying transmissibility. We
present a preliminary numerical and theoretical analysis that reveals that mild levels of
variation in strains’ fitness do not significantly alter the dynamics compared to the neu-
tral case; however, if fitness heterogeneities become larger than a given threshold level, a
super-fit strain becomes able to dominate the ecosystem.

3.2 Ecological modeling of multi-strain dynamics

Most multi-strain models in the epidemiological literature consider only two interacting
strains. Two-strain models are often amenable to analytical calculations, allowing for
an in-depth characterization of co-existence and its conditions. However, it may not be
straightforward to apply these insights to larger multi-strain systems.

Several epidemiological works have adopted an ecological perspective, shedding light
on ecological consequences of strain interactions. In Section 2.5.5 we reviewed works
that explicitly accounted for network structure. Nonetheless, other studies investigated
multi-strain dynamics in homogeneous populations. Authors in [272], for example, have
studied several communities of S. aureus, S. pneumoniae and N. meningitidis, and found
that a minimal transmission model with neutral mutations is able to explain genetic
diversity across strains. Authors in [273] found instead that cross-immunity between
antigenically similar strains favors the self-organization of a pathogen population into
non-overlapping clusters, explaining observed antigenic patterns of N. meningitidis.

Tools and concepts from community ecology might shed light on drivers of diversity
in multi-strain populations [274, 275]. According to community ecology, the composi-
tion of an ecological community is the result of multiple concurrent processes, namely
ecological drift, selection, dispersal and speciation [276]. In the context of multi-strain
populations, selection is understood as the outcome of strain interactions, fitness differ-
ences and ecological niches [275]. In a neutral scenario selection is absent and all strains
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share the same reproductive abilities. In this case, community dynamics is driven by eco-
logical drift, i.e. by random processes such as host-to-host transmission, recovery, and
strain introductions.

Several ecological models are based on the island-mainland paradigm, where a local
community (inhabiting the island) is coupled to a much larger community (occupying
the mainland) through migration. The mainland is usually assumed to be unaffected by
local island dynamics due to its larger size. In mathematical epidemiology the island
might represent an open host population characterized by turnover of individuals. This
mechanism provides a continual influx of both new hosts and new strains, replenishing
the local strain ecosystem.

3.2.1 Ecological characterization of multi-strain populations

Ecological multi-strain models enable making predictions about the abundance of each
strain. The set of abundances Ni is known in community ecology as the species abun-
dance distribution [277, 278, 279]. Within a model with just two strains, one susceptible
and one resistant to antibiotics, the frequency of antimicrobial resistance has direct eco-
logical and public health implications. Indeed, works addressing the emergence of an-
tibiotic resistance usually use this quantity as a metric to assess the impact of intervention
strategies [26, 73, 25].

For large microbial communities, however, the interpretation of strain abundances
is not as straightforward as in the case of just two strains. A possible way to charac-
terize and compare different strain communities consists in using univariate measures
that summarize ecological properties of a community [280]. Richness, i.e. the number
of co-circulating strains, represents such an example. It must be noted, however, that
a single indicator is not sufficient to describe all the facets of ecological diversity. For
example, because richness is not sensitive to the magnitude of individual species’ abun-
dances, it cannot discriminate between different scenarios that share the same number
of strains but with different proportions. In other words, richness cannot quantify even-
ness. A standard ecological indicator able to quantify evenness is the Shannon Evenness
H, which is defined as:

H = − 1
log(Ns)

∑
i

Ni

N
log
(

Ni

N

)
, (3.1)

where N = ∑i Ni is the total prevalence and Ns is strain richness. H represents the
Shannon entropy of the species abundance distribution, divided by its largest possible
value, namely log(Ns). The latter value corresponds to a configuration where all species
are equally abundant; thus H = 1 in this case. Conversely, H is small when a few species
dominate and others are scarcely abundant. Similar insights can be obtained by using the
Berger-Parker index, which is defined as the fractional abundance of the most abundant
strain, i.e. BP = maxi Ni/N. By definition, the Berger-Parker index lies in the interval
[N−1

s , 1]. The lower limit is attained in the case of a perfectly even community, whereas
the upper limit corresponds to full domination by a single strain.
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3.3 Case study: S. aureus spread in hospitals

3.3.1 Overview of S. aureus ecology

S. aureus is a Gram-positive bacterium that colonizes hosts without necessarily harm-
ing them or causing any symptom. Asymptomatic carriage is common, with 30% of the
human population actually sharing this condition, and, although apparently harmless,
represents a major risk factor for S. aureus infection [281]. Spread of S. aureus occurs
mainly through direct contact, although transmission due to environmental contamina-
tion is also possible [282].

S. aureus has raised remarkable concern due to its ability to become resistant to an-
tibiotics. The global burden of antibiotic-resistant S. aureus infections has increased since
the introduction of penicillin during the early 1940s [3]. As explained in [3], antibiotic re-
sistance in S. aureus has emerged through multiple waves, triggered by the introduction
of new antibiotics into clinical practice. Methicillin-resistant S. aureus (MRSA), which is
considered one of the major causes of nosocomial infections [283, 284], has emerged in
the 1960s, became endemic in hospitals by the late 1970s and spread to the community
by the late 1990s [3].

Several studies probed S. aureus strain ecosystem in health-care facilities [285, 286,
41, 287]. The overall picture emerging from these studies is that of a highly diverse
ecosystem composed by many rare species and a few dominant strains. The drivers of
such diversity are not completely understood. A few studies suggest neutral competi-
tion between different S. aureus strains [288, 272], whereas others suggest instead differ-
ent competitive abilities across strains [289, 290, 291] and the existence of multiple host
niches [292].

Most models describing the spread of multiple S. aureus strains in hospitals consider
only two strains. Usually, one of these strains is assumed to be resistant to antibiotic treat-
ment (R), whereas the remaining one is assumed to be susceptible (S). In a few cases, a dis-
tinction between hospital- and community-associated resistant strains is also made [293,
294]. R and S strains are often assumed to compete through mutual exclusion, preventing
colonized hosts to become either co-infected or super-infected. The protective effect of S.
aureus carriage is supported by both in vitro and in vivo experiments [295, 296, 77].

A central question to most modeling studies is whether R and S can co-exist at the
population level, e.g. in a hospital, and under which conditions. Simple models of com-
petition usually fail at explaining co-existence and rather predict competitive exclusion.
The latter outcome arises because a homogeneous population made up by a single host
type cannot sustain two strains with different competitive abilities. In other words, sim-
ple models assume only one possible ecological niche which can be occupied by a single
strain at most. Researchers have thus focused on mechanisms able to boost co-existence
between competing bacteria [271]. Antibiotic treatment for example can promote co-
existence by limiting the competitive advantage of S over R in treated individuals [297].
In a recent work it has been shown that stratification of the host population in several
classes can also promote co-existence, provided that mixing between classes is low and
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frequency of treatment varies across classes [23]. Several studies allow new strains to be
injected into the host population as a result of, e.g., patients that are already colonized
at admission [298, 299], or mutations [272]. In such cases, strain diversity becomes the
result of the interplay between extinction and immigration.

The studies mentioned above provide general results regarding the emergence and
maintenance of antibiotic resistance; nonetheless, not all of these works are based on
mechanistic models specifically designed and calibrated for S. aureus. More tailored mod-
els should incorporate additional mechanistic ingredients, e.g. selective pressure due to
antibiotics [293], compliance to hygiene measures [226] and heterogeneities in carriage
types [300].

3.3.2 The I-Bird experiment

The I-Bird experiment was a cohort study that took place in a French long-term healthcare
facility in 2009 [301, 41, 209, 210, 42]. The experiment lasted for 6 months, from May to
October 2009. Every participant, be it a patient or a staff member, wore a RFID sensor.
Signal strength was tuned so that only devices within a small distance (around 1.5 m)
and placed directly in front of each other were able to register a contact. Discarding a
two months long pilot phase, more than 1 million CPIs were collected, spanning a period
of almost 4 months between the 01/07/2009 and the 26/10/2009.

Participants underwent weekly swabs in order to detect carriage of S. aureus, Es-
cherichia coli and Klebsiella pneumoniae. In the case of patients, nasal and rectal swabs
as well as swabs from wounds, tracheotomy and other invasive devices were collected.
Positive swabs underwent further microbiological examinations. For the case of S. aureus,
for example, spa-type and antibiotic resistance profile were determined.

Results from microbiological tests provide weekly snapshots of S. aureus ecosystem
in the hospital. In Fig. 3.1 A we show each strain’s abundance weekly time series, as
measured from carriage data. We have stacked all time series together, so that the height
of the bars indicates the total number of carriers. Each bar also shows how total S. aureus
carriage decomposes in terms of different strains during a given week. Strain richness
and Berger-Parker index are shown as well in Fig. 3.1 B, C respectively.

3.4 First article: Host contact dynamics shapes richness and dom-
inance of pathogen strains
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Francesco Pinotti1, Éric Fleury2, Didier Guillemot3, Pierre-Yves BöelleID
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Abstract
The interaction among multiple microbial strains affects the spread of infectious diseases

and the efficacy of interventions. Genomic tools have made it increasingly easy to observe

pathogenic strains diversity, but the best interpretation of such diversity has remained diffi-

cult because of relationships with host and environmental factors. Here, we focus on host-

to-host contact behavior and study how it changes populations of pathogens in a minimal

model of multi-strain interaction. We simulated a population of identical strains competing

by mutual exclusion and spreading on a dynamical network of hosts according to a stochas-

tic susceptible-infectious-susceptible model. We computed ecological indicators of diversity

and dominance in strain populations for a collection of networks illustrating various proper-

ties found in real-world examples. Heterogeneities in the number of contacts among hosts

were found to reduce diversity and increase dominance by making the repartition of strains

among infected hosts more uneven, while strong community structure among hosts

increased strain diversity. We found that the introduction of strains associated with hosts

entering and leaving the system led to the highest pathogenic richness at intermediate turn-

over levels. These results were finally illustrated using the spread of Staphylococcus aureus

in a long-term health-care facility where close proximity interactions and strain carriage

were collected simultaneously. We found that network structural and temporal properties

could account for a large part of the variability observed in strain diversity. These results

show how stochasticity and network structure affect the population ecology of pathogens

and warn against interpreting observations as unambiguous evidence of epidemiological dif-

ferences between strains.

Author summary

Pathogens are structured in multiple strains that interact and co-circulate on the same

host population. This ecological diversity affects, in many cases, the spread dynamics and

the efficacy of vaccination and antibiotic treatment. Thus understanding its biological and

host-behavioral drivers is crucial for outbreak assessment and for explaining trends of
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new-strain emergence. We used stochastic modeling and network theory to quantify the

role of host contact behavior on strain richness and dominance. We systematically com-

pared multi-strain spread on different network models displaying properties observed in

real-world contact patterns. We then analyzed the real-case example of Staphylococcus
aureus spread in a hospital, leveraging on a combined dataset of carriage and close prox-

imity interactions. We found that contact dynamics has a profound impact on a strain

population. Contact heterogeneity, for instance, reduces strain diversity by reducing the

number of circulating strains and leading few strains to dominate over the others. These

results have important implications in disease ecology and in the epidemiological inter-

pretation of biological data.

Introduction

Interactions between strains of the same pathogen play a central role in how they spread in

host populations. [1–7]. In Streptococcus pneumoniae and Staphylococcus aureus, for instance,

several dozen strains can be characterized for which differences in transmissibility, virulence

and duration of colonization have been reported in some cases [8, 9]. Strain diversity may also

affect the efficacy of prophylactic control measures such as vaccination or treatment. Indeed,

strains may be associated with different antibiotic resistance profiles [3, 5, 10, 11], and devel-

oped vaccines may only target a subset of strains [2, 3, 12]. With the increasing availability of

genotypic information, it has become easy to describe the ecology of population of pathogens

and to monitor patterns of extinction and dominance of pathogen variants [13–17]. However,

the reasons for multi-strain coexistence patterns (e.g. coexistence between resistant and sensi-

tive strains) or dominance of certain strains (e.g. in response to the selection pressure induced

by treatment and preventive measures) remain elusive. One may invoke selection due to differ-

ent pathogen characteristics, but also environmental and host population characteristics, lead-

ing to differences in host behavior, settings and spatial structure may affect the ecology of

strains [14–19]. In particular, human-to-human contacts play a central role in infectious dis-

ease transmission [20]. This is increasingly well described thanks to extensive high-resolution

data—including mobility patterns [21–23], sexual encounters [24], close proximity interac-

tions in schools [25, 26], workplaces [27], hospitals [16, 28–31], etc.—that enable basing epide-

miological assessment on contact data with real-life complexity [32, 33]. For instance, the

frequency of contacts can be highly heterogeneous leading more active individuals to be at

once more vulnerable to infections and acting as super-spreaders after infection [24, 33–35].

Organizational structure of certain settings (school classes, hospital wards, etc.) and other spa-

tial proximity constraints lead to the formation of communities that can delay epidemic spread

[36, 37]. Individual turnover in the host population is also described as a key factor in control-

ling an epidemic [20, 38]. It is likely that, since they impact the spread of single pathogens,

the same characteristics could affect the dynamics in multi-strain populations. It was shown,

indeed, that network structure impacts transmission with two interacting strains [39–46], the

evolution of epidemiological traits [47–49] and the effect of cross-immunity [50, 51]. Yet in

these cases, complex biological mechanisms—such as mutation, variations in transmissibility

and infectious period, cross immunity—were used to differentiate between pathogens, thereby

making the role of network characteristics difficult to assess in its own right.

For this reason, we focused on the dynamical pattern of human contacts and examined

whether it contributes to shaping the population ecology of interacting strains under minimal

epidemiological assumptions regarding transmission. We described a neutral situation where

Host contacts shape strain diversity
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all strains have the same epidemiological traits and compete via mutual exclusion (concurrent

infection with multiple strains is assumed to be impossible) in a Susceptible-Infected-Suscepti-

ble (SIS) framework. We studied the spread of pathogens in a host population during a limited

time window, disregarding long-term evolution dynamics of pathogens. More precisely, new

strains were introduced through host turnover rather than de novo mutation or recombination

in pathogens. We quantified the effect of network properties on the ecological diversity in

strain populations with richness and dominance indicators. We assessed in turn heterogene-

ities in contact frequency, community structure and host turnover by comparing simulation

results obtained with network models exhibiting a specific feature. We then interpreted S.
aureus carriage in patients of a long-term care facility in the light of these results.

Results

Multi-strain spread on dynamical networks

We simulated the stochastic spread of multiple strains on a dynamical contact network of indi-

viduals (nodes of the network). Individuals can be either susceptible or infected with a single

strain at a given time, and, for each strain, β and μ indicate the transmission and the recovery

rate respectively. We assumed turnover of individuals, who enter the system with rate λin, and

associated injection of previously unseen strains, carried by incoming individuals with proba-

bility ps. We considered synthetic network models, each displaying a specific structural feature,

as well as a real network reconstructed from close-proximity-interaction data collected in a

hospital facility. We calibrated all network models to the same average quantities—average

population size �V , fraction of active nodes �a, average degree �k and strength of the community

repartition pIN, when applicable—that were chosen to correspond with the hospital network

used in the application. Epidemiological parameters were motivated by the duration of S.
aureus carriage in patients. A larger range of values was explored in some cases to address

their impact on the dynamics. We analyze the structure of strain population at the dynamic

equilibrium by computing, for each network model, ecological diversity measures, including

species richness and evenness/dominance indices [52, 53]. All details about network models,

numerical simulations and ecological indicators are described in the Materials and methods

section.

Effects of contact heterogeneity

In order to probe the effect of contact heterogeneity on strain ecology we compared a homoge-

neous model (HOM) in which all nodes have the same activity potential, i.e. they have equal

rate of activation to establish contacts, with a heterogeneous model (HET), akin to the activity-

driven model described in [34], where the activity potential is different across nodes and is

drawn from a power-law distribution.

Fig 1 shows the results of numerical simulations comparing HOM and HET models. Sam-

ple epidemic trajectories are reported in Fig 1A. Here every strain is indicated with its own

color to display its dynamics resulting from the interaction with the other strains. Fig 1B–1D

shows summary statistics in varying strain transmissibility β. The prevalence presents a well-

known behavior for both static and dynamic networks (Fig 1B): contact heterogeneities lower

the transmissibility threshold above which total prevalence is significantly above zero, thus

allowing the spread of pathogens with low transmissibility. At the same time, however, hetero-

geneities hamper the epidemic spread when β is large, reducing the equilibrium prevalence

[35]. Fig 1C shows the average richness, i.e. the number of distinct strains co-circulating. For

low values of βHET displays larger richness values compared to HOM. This trend reverses as

Host contacts shape strain diversity
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Fig 1. Effect of contact heterogeneity on strain richness. Comparison between a homogeneous (HOM) and a heterogeneous (HET) network. In HOM all nodes

have the same activity rate aH = 0.285 and the network average degree is �k ¼ 0:89. In HET the activity rate of each node is drawn randomly from a power-law

distribution with support (�, 1] and the same average value as in HOM. Lower values of the power-law exponent γ correspond to a higher contact heterogeneity. The

average degree is the same as in HOM. We chose a population of �V ¼ 306 individuals, average length of stay τ = 10 days, probability of strain injection per incoming

individual ps = 0.079, and recovery rate μ = 0.00192 (see Materials and methods). (A) Sample time series of strain abundance for HOM and HET with γ = 0.7. Each

time series is represented with a different color. All abundances are stacked together, so that plot’s height represents prevalence. Here β = 0.02. (B) Average prevalence

vs β, and (C) average richness vs β. Two levels of heterogeneity are here considered for HET. For the sake of visualization, the shaded area corresponding to the

standard deviation is shown only for HOM. Median and confidence intervals are reported in S1 Fig of the supporting information. (D) Average prevalence vs richness.

Dashed lines are shown as a guide to the eye, highlighting variation in richness induced by network topology.

https://doi.org/10.1371/journal.pcbi.1006530.g001

Host contacts shape strain diversity
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β increases, and the richness is lower in HET consistently with the lower level of prevalence.

The relation between richness and prevalence, however, is not straightforward. For instance,

the reduction in richness for high β values is important even for the case with limited contact

heterogeneity, when prevalence is barely affected. The scaling between prevalence and richness

is not linear as β varies (Fig 1D), and the relation between the two quantities varies appreciably

among contact networks. In correspondence of a fixed value of prevalence, heterogeneous net-

works have lower richness—e.g. a prevalence value of�0.8 corresponds to�20% lower rich-

ness in HET with respect to HOM, as highlighted in Fig 1D.

This fact can be explained by the dynamical properties of epidemics on heterogeneous net-

works. Active nodes, involved in a larger number of contacts, get infected more frequently

[35]. Also, a randomly chosen node is likely surrounded by active nodes [33]. As a conse-

quence, injected strains often find their propagation blocked by active infected nodes. In this

way, contact heterogeneities enhance the competition induced by mutual exclusion and ham-

per the wide-spread of emerging strains, similarly to what was found in [46]. This mechanism

is further confirmed by looking at the persistence time of strains (S2 Fig in the supporting

information). Above the epidemic threshold, it is on average shorter in heterogeneous net-

works than in homogeneous ones. The distributions are however more skewed in heteroge-

neous networks, indicating that more strains are going extinct rapidly, while a few others can

survive for a long time in the population.

If on the one hand hubs accelerate the extinction of certain strains, on the other they act as

super-spreaders, amplifying the propagation of other strains. We find that this impacts pro-

foundly the distribution of strains’ abundances, i.e. the strain-specific prevalence. Fig 2A

shows that the latter is broader for the HET network, with the most abundant strain reaching

a larger proportion of cases. This situation is synthesized by the Berger-Parker index, that

quantifies the level of unevenness or dominance of a given ecological system [52, 53]. This is

defined as the relative abundance of the most abundant strain (see Materials and methods sec-

tion). Fig 2B shows that Berger-Parker index increases with β for all networks. This is expected

since at low β strains’ transmission chains are short and barely interact, while they interfere

more at higher values of transmission potential. The Berger-Parker index is always higher in a

Fig 2. Effect of contact heterogeneity on strain dominance. (A) Distribution of strains’ relative abundance, i.e. the frequency of strains infecting a given fraction of

the total prevalence, for HOM (blue), HET with γ = 2.5 (red), and HET with γ = 0.7 (green). Here β = 0.02. (B) Berger-Parker index, i.e. the relative abundance of the

most abundant strain, as a function of β. For the sake of visualization, the shaded area corresponding to the standard deviation is shown only for HOM. Median and

confidence intervals are reported in S1 Fig of the supporting information. (C) Berger-Parker index vs richness. Parameters are the same as in Fig 1.

https://doi.org/10.1371/journal.pcbi.1006530.g002

Host contacts shape strain diversity
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heterogeneous network, even when the comparison is made at fixed values of richness (Fig

2C). An alternative indicator, the Shannon evenness, shows a similar behavior as displayed in

S3 Fig.

The fraction of strains going extinct also depends on stochastic effects in a finite size popu-

lation. We indeed found that increasing network size, when temporal and topological proper-

ties were the same, led to an increase in both persistence time and richness (S4 Fig). This

shows that interference among transmission chains is reduced in larger populations. However,

the relative abundance distribution remained similar, showing that it is primarily affected by

the nodes’ activity distribution (S5 Fig).

Eventually, we tested whether additional mechanisms of strain injection were leading to dif-

ferent results. In S6 Fig we assumed new strains to infect susceptible nodes already present in

the system with rate qs, mimicking in this way transmissions originating from an external

source, as it can happen in real cases. The plot of S6 Fig shows the same qualitative behavior

described here.

Effect of community structure

We considered a community model (COM) with nC communities in which all nodes are as

active as in HOM, but direct a fraction pIN of their links within their community and the rest

to nodes in the remaining nC − 1 communities. The closer pIN is to 1, the stronger the reparti-

tion in communities is.

Fig 3A and 3B shows that a network with communities displays a higher richness for large

β; even when community structure barely affects prevalence (Fig 3B). However, the effect is

important only when communities are fairly isolated (pIN = 0.99) and the injection from the

outside is not so frequent—otherwise the effect is masked by strain injection which occurs uni-

formly across communities. In particular, for the values of pIN = 0.78 and ps = 0.079, chosen to

match the hospital application, the difference with the homogeneous case is very small. The

limited role of community structure is also confirmed by the fact that once this feature is

combined with heterogeneous activation—in a model with the activation scheme of HET

and the stub-matching of COM—the latter property has the dominant effect and the richness

decreases (S1 Fig).

The relation between richness and prevalence remains the same when adding the injection

of new strains due to the transmission from an external source. This mechanism further

increases the richness. When β is high and the fraction of infected nodes is close to one, how-

ever, such a mechanism is hindered by the fact that susceptible nodes, that can get infected

from the external source, are rare (see S6 Fig). This is why richness starts to decrease for high

values of β.

We tested the consequences of communities in strain dominance by plotting the Berger-

Parker index in Fig 3C. For low β, the behavior of the Berger-Parker index follows the trend in

richness. The initial decrease in this indicator is due to the increase in richness, that occurs at

constant prevalence and is thus associated to a decrease in the average abundance [54]—green

curve corresponding to pIN = 0.99 and ps = 0.01. At larger values of β, instead, increased com-

petition levels induced higher dominance levels.

The increase in strain diversity is due to the reduced competition among strains introduced

in different communities. When coupling among communities is low, indeed, strains may

spend the majority of time within the community they were injected in, thus avoiding strains

injected in other communities. Fig 3D confirms this hypothesis by showing the Inverse Partici-

pation Ratio (IPR) [55] that quantifies uniformity in the repartition of abundance across com-

munities. Values close to zero indicate uniform repartition, while, conversely, values close to 1

Host contacts shape strain diversity
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Fig 3. Impact of community structure. (A) Richness vs β for HOM (blue), COM with pIN = 0.78 (red), and COM with pIN = 0.99 (green). For both COM models we

have set nC = 6. Solid lines correspond to ps = 0.01, while dashed lines correspond to ps = 0.079. Solid lines refer to the right y-axis, while dashed ones to the left y-axis.

For the sake of visualization, the shaded area corresponding to the standard deviation is shown only for HOM. Median and confidence intervals are reported in S1

Fig of the supporting information. (B) Prevalence vs richness and (C) Berger-Parker index vs richness, for ps = 0.01. (D) Average IPR for both ps = 0.01 (white

background) and ps = 0.079 (gray background). Here β = 0.02. Squares correspond to IPR obtained from total prevalence while circles correspond to IPR obtained

from strains’ abundances. A value of the IPR close to 1 indicates localization over one community. Here no injection due to transmission from an external source is

assumed (qs = 0). The effect of this second mechanism is shown in S6 Fig.

https://doi.org/10.1371/journal.pcbi.1006530.g003

Host contacts shape strain diversity
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indicate that, on average, a strain is confined within a single community for most of the time

(more details are reported in the Materials and methods section). The strength of the commu-

nity structure does not affect the repartition of the total prevalence (squares in the plot), how-

ever it alters the average IPR value computed from the abundance of single strains, thus strains

become more localized as pIN increases. Notice that a certain degree of localization is present

also in the homogeneous network, due to those strains causing very few generations before

going extinct.

As a sensitivity analysis we tested whether the main results obtained so far are the same in a

more realistic situation where additional heterogeneous properties of nodes are accounted for.

We consider the case in which infectious duration varies across individuals, as happens for S.
aureus colonization. S7 Fig shows that the inclusion of three classes differing in recovery rate

reduces richness and increases the Berger-Parker index with respect to the homogeneous

recovery. However, the effects discussed so far—e.g. reduction and amplification of richness in

HET and COM, respectively—are still present.

Effect of turnover of individuals

Node turnover represents another important property of a network that may impact the eco-

logical dynamics of strains for two reasons: incoming individuals contribute to richness by

injecting new strains; on the other hand, the removal from the population of infected nodes

breaks transmission chains and hampers the persistence of strains. The result of the interplay

between these two mechanisms is summarized by the plot of richness as a function of β and

node length of stay, τ,—Fig 4A. The figure, obtained with the HOM model, shows two distinct

regimes. In the former case, richness decreases as τ increases, because replacement of individu-

als becomes slower and injections less frequent. In the high β regime, instead, the average

richness at fixed β does not depend monotonically on the node turnover but it is instead maxi-

mized at intermediate τ. Interestingly, the optimal value of τ decreases as β increases. This

Fig 4. Effects of node length of stay on strain diversity. (A) Average richness and (B) Average Berger-Parker index for simulations on HOM model. Contour plots

are shown in both figures. While exploring τ we also set the value of the average network size �V to 306, thus the injection rate can be computed by the relation

lin ¼
�V=t. For each value of β we highlight in panel (A) the value of the length of stay corresponding to the maximum richness (white asterisks) together with the

analytical prediction (white line) obtained by using Eq (1). Here μ = 0.00192, �k ¼ 0:89, aH = 0.28.

https://doi.org/10.1371/journal.pcbi.1006530.g004

Host contacts shape strain diversity
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behavior can be explained by looking at the balance between injection and extinction that

determines the equilibrium value of richness, �NS. This reads [56]:

�NS ¼ linpsTpersðb; tÞ ¼
�V ps

Tpersðb; tÞ

t
; ð1Þ

where λinps is the rate at which new strains are introduced and Tpers is the average persistence

time of a strain. The trade-off between injection and extinction appears as the ratio between

the two time scales, Tpers and τ. In the limit τ! 0 the spread plays no role, even for high β. As

τ increases, newly introduced infectious seeds have a higher probability to spread, thus the

average extinction time initially increases super-linearly with τ (see S8 Fig in the supporting

information) resulting in an increase of richness. However, past a certain value of τ, Tpers

does not grow super-linearly anymore, thus a further increase in τ is detrimental for pathogen

diversity because it is associated to fewer introductions. This general behavior was not altered

by the accounting for introductions by transmissions from an external source as shown in

S6 Fig.

We derive an approximate formula for Tpers considering an emerging strain competing

with a single effective strain formed by all other strains grouped together. This formulation,

enabled by the neutral hypothesis, makes it possible to write the master equation describing

the dynamics and to use the Fokker-Planck approximation to derive persistence times (see

Materials and methods section). Analytical results well reproduce the behavior observed in the

simulations, and, in particular, the value of the length of stay maximizing richness for different

β as shown by the comparison between white stars and continuous line in Fig 4B. The quanti-

tative match for other values of ps is reported in S9 Fig.

Unlike richness, Berger-Parker index always increases monotonically with the length of

stay—Fig 4B. This behavior is due to the correlation of this indicator with average abundance,

similarly to what we discussed in the previous section.

Spread of S. aureus in a hospital setting

We conclude by analyzing the real-case example of the S. aureus spread in a hospital setting

[10, 57]. We used close-proximity-interaction (CPI) data recorded in a long-term health-care

facility during 4 months by the i-Bird study [16, 28, 31]. These describe a high-resolution

dynamical network whose complex structure reflects the hospital organization, the subdivision

in wards and the admission and discharge of patients [58]. Together with the measurements of

contacts, weekly nasal swabs were routinely performed to monitor the S. aureus carriage status

of the participants and to identify the spa-type and the antibiotic resistance profile of the colo-

nizing strains.

The modeling framework considered here well applies to this case. The SIS model is widely

adopted for modeling the S. aureus colonization [59, 60], and the assumption of mutual exclu-

sion is made by the majority of works to model the high level of cross-protection recognized

by both epidemiological and microbiological studies [61, 62]. The dynamic CPI network was

previously shown to be associated with paths of strain propagation [16]. Consistently, we

assumed that transmission is mediated by network links with transmissibility β. In addition,

new strains are introduced in the population carried by incoming patients, or through contacts

with persons not taking part in the study.

Fig 5A shows weekly carriage and its breakdown in different strains. Prevalence and rich-

ness fluctuate around the average values 87,3 ± 6,3 cases and 39,8 ± 2 strains, respectively.

Simulation results are reported in Fig 5B, that displays the impact of transmission and intro-

duction rate on richness and prevalence. When qs is low we find a positive trend between

Host contacts shape strain diversity
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Fig 5. S. aureus population structure on hospital network. (A) Weekly carriage data measured during the i-Bird experiment. Each S. aureus strain’s abundance time

series is represented by a different color. All time series have been stacked as in Fig 1A. (B) Prevalence vs. richness from simulations on the hospital network for

different β and different rates of introduction, here tuned by the parameter qs. Blue dashed lines represent the average empirical values. (C) Prevalence vs richness for

hospital contact data (blue dots) and RAND null model (grey dots). In RAND contacts are randomized by preserving the first and the last contact of every individual.

Markers’ size in (B) and (C) is proportional to the value of β. The hospital curve corresponds to the curve in (B) with blue-contour markers. (D) Weekly value of

Berger-Parker index in carriage data (squares) along with the same quantity from the simulations. The shaded areas indicate the average plus/minus the standard

deviation obtained from 1000 stochastic runs. For each network, parameter values are the ones that reproduce empirical prevalence and richness. Duration of

colonization is assumed here to be 35 days [63]. Alternative values of this parameter led to the same qualitative results (S10 Fig).

https://doi.org/10.1371/journal.pcbi.1006530.g005
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richness and prevalence, consistently with the synthetic case. For larger values of qs the trend

appears instead different. As transmissibility increases, richness initially grows with prevalence

and then decreases after a certain point. This behavior is the same as observed in S6 Fig and

stems from the reduction of susceptible nodes, that causes a decline in the expected injection

rate—see Materials and methods section.

To quantify the effect of contact patterns on S. aureus population ecology we compared

simulation results with the ones on a network null model. Specifically, we built the RAND null

model that randomizes contacts while preserving just the first and the last contact of every

individual. The randomization preserves node turnover, the number of active nodes and links

and destroys contact heterogeneities and community structure along with other correlations.

Fig 5C shows the comparison for different transmissibility values. The effect of the network is

consistent with the theoretical results described for a heterogeneous network, i.e. smaller rich-

ness values correspond to the same prevalence in the real network compared to the homoge-

neous one. We then quantified the level of dominance of the multi-strain distribution by

means of the Berger-Parker index. We chose for each network the values of qs and β that better

reproduce empirical richness and prevalence and, interestingly, we found that, for the two

cases, same average richness and prevalence correspond to different levels of Berger-Parker

index. The Berger-Parker index obtained with the real network is the highest and the one that

better matches the empirical values—i.e. the empirical values are within one standard devia-

tion of the mean for almost all weeks. Based on this result we argue that contact heterogene-

ities, along with the other properties of the contact network, contribute to the increased

dominance of certain strains.

Discussion

Multiple biological and environmental factors concur in shaping pathogen diversity. We

focused here on the host contact network and we used a minimal transmission model to assess

the impact of this ingredient on strain population ecology, quantifying the effects of three

main network properties, i.e. heterogeneous activity potential, presence of communities and

turnover of individuals. Results show that the structure and dynamics of contacts can alter pro-

foundly strains’ co-circulation. Contact heterogeneities were found to shape the distribution

of strains’ abundances. Highly active nodes are known to play an important role in outbreak

dynamics by acting as super-spreaders [33]. At the same time, however, they were found to

enhance the interference between the transmission chains of different strains, thus hindering

the spread of an emerging variant [46]. Here we showed that the combination of these two

dynamical mechanisms reduces the richness and increases the level of heterogeneity in strains’

abundances. In particular, hubs could allow strains with no biological advantage to generate a

large number of cases and outcompete other equally fit strains. This mechanism may poten-

tially bias the interpretation of biological data. Dynamical models that do not properly account

for contact structure could overestimate the difference in strains’ epidemiological traits in the

attempt to explain observed fluctuations in strain abundance induced in reality by super-

spreading events. Moreover, these models could provide biased assessment of transmission vs.

introduction rates.

The presence of communities causes the separation of strains and mitigates the effect of

competition thus enhancing co-existence. A similar behavior was already pointed out before

[46, 51, 59, 64], e.g. for the spread of S. pneumoniae, as induced by age assortativity [64], for

the case of S. aureus where distinct settings were considered [59], and for a population of

antigenic distinct strains in presence of cross-immunity [51]. We found that the impact of

community structure is not so strong, and it is likely minor when individuals of different

Host contacts shape strain diversity
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communities have frequent contacts. No appreciable variation was observed, indeed, for pIN =

0.78, chosen to match the inter-ward coupling of the hospital network. Similar results can be

expected for school classes or workplace departments presenting a similar level of community

mixing. The effect on richness becomes appreciable for low community coupling (e.g. pIN =

0.99 in Fig 3). This is consistent with a certain degree of diversity observed among strains

belonging to separated communities, as it is the case of different hospitals [15].

Eventually, the analysis of turnover of individuals revealed major effects on strain diversity,

when this mechanism is also the main driver of the introduction of strains in the population.

When transmissibility is low richness decreases with host length of stay. When transmissibility

is above the epidemic threshold we showed the existence of an optimal value of the length of

stay that maximizes strain richness as a result of the interplay between two competing time

scales, namely the typical inter-introduction time and the average persistence time of a strain.

This provides insights for the spread of bacterial infections in transmission settings, such as

hospitals or farms, that are of particular relevance for the spread of antimicrobial resistance

and that are characterized by a rapid host turnover [15, 31, 65]. For the case of hospitals, for

instance, they suggest that variations in patients’ length of stay, as induced by a change of pol-

icy, could have appreciable effects on the population structure of nosocomial pathogens.

We adopted a neutral model to better disentangle the relative role of the different network

properties. A wide disease-ecology literature addressed the consequences of neutral hypotheses

on multi-strain balance in order to provide a benchmark for interpreting the observed co-

existence patterns and gauging the effect of selective forces potentially at play [11, 18, 66, 67].

Many of these works addressed, for instance, the co-existence between susceptible and resis-

tant strains of S. pneumoniae [11, 66]. However, this assumption was rarely adopted in net-

work models, that consider for the majority strains with different epidemiological traits with

the aim of describing pathogen selection and evolution [47–49, 68]. Strains were assumed to

have the same infection parameters in [50, 51], where the role of community structure and

clustering was analyzed in conjunction with cross-immunity. With respect to these works, the

minimal transmission model used here enabled a transparent comprehension of the role of the

network. Multiple identical SIS processes can be mapped, in fact, on a single SIS process, in

such a way that the wide literature of single SIS processes allows for a better understanding of

the behavior recovered in the simulations [32, 33]. Strains can be also grouped in two macro-

strains. This strategy allowed us to adopt the viewpoint of an emerging strain and study its

competition with the others seen as a unique macro-strain. The associated master equation

and Fokker-Planck approximation allowed computing the average extinction time, capturing

the key aspects of the dynamics. In a future work this theoretical framework could be extended

to consider other network topologies. It could, for instance, be coupled with the activity-block

approximation to describe heterogeneous networks. Additional numerical analyses, based on

a similar transmission model, could also address other properties known to alter spreading

dynamics, such as heterogeneous inter-contact time distribution or topological and temporal

correlations.

As a case study, we analyzed the spread of S. aureus in a hospital taking advantage of the

simultaneous availability of contact and carriage information [16]. The temporal and topologi-

cal features of the network lead to a lower prevalence and richness with respect to the homoge-

neous mixing (although the effect was quite small). In addition, similar prevalence and

richness values are associated to different dominance levels in different networks—i.e. differ-

ent values of the Berger-Parker index—with the real network leading to a higher dominance as

observed in reality. This behavior can be explained by the theoretical results and can be attrib-

uted essentially to the effect of contact heterogeneities, considering that the community struc-

ture does not have appreciable effects for this network, as discussed above. The importance of
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accounting for host contacts and hospital organization in the assessment of bacterial spread

and designing interventions has been recognized by several studies [16, 28–31, 63]. Here we

show that this element may be critical also for understanding the population ecology of the

bacterium. It is important to note however that, while the realistic network provides results

that are closer to the data, this ingredient explains only part of the heterogeneity observed in

the abundance. This shows that the contact network is a relevant factor, but other factors

should be considered as well. The approach used here is intentionally simplified, as we focused

on the main dynamical consequences of the contact network. Clearly, more detailed models

can be designed to reproduce more closely the data. A certain degree of variation in the epide-

miological traits could be at play, as for example the fitness cost of resistance [8]. Role of hosts

in the network (e.g. patients vs. health-care workers), and heterogeneities in health conditions,

antibiotic treatment and hygiene practices are also known to affect duration of carriage and

chance of transmission [16, 28, 31, 63]. Eventually, we must consider that the comparison of

model output with carriage data is also affected by the limitation of the dataset itself, already

described in [16]. In particular, the weekly swabs may leave transient colonization undetected.

Moreover, while the relevance of CPIs as proxies for epidemiological links has been demon-

strated [16], the transmission through the environment (e.g. in the form of fomites) is also

possible.

The understanding provided here can be relevant for other population settings, temporal

scales and geographical levels. In addition, the modeling framework could be applied to patho-

gens other than S. aureus, such as human papillomavirus, S. pneumoniae and Neisseria menin-
gitidis, for which the strong interest in the study of the strain ecology is justified by the public

health need for understanding and anticipating trends in antibiotic resistance, or the long-

term effect of vaccination [1, 2, 4, 5]. With this respect, if the simple framework introduced

here increases our theoretical comprehension of the multi-strain dynamics, more tailored

models may become necessary according to the specific case. In particular, we have considered

complete mutual exclusion as the only mechanism for competition. In reality, a secondary

inoculation in a host that is already a carrier may give rise to alternative outcomes, such as co-

infection or replacement [69]. In addition, infection or carriage may confer a certain level of

long-lasting strain-specific protection and/or a short-duration transcendent immunity [11,

50]. Eventually mechanisms of mutation and/or recombination are at play and their inclusion

into the model can be important according to the time scale of interest.

Materials and methods

Network models

We provide here details of the generative algorithms used for the contact network models. Net-

work dynamics is implemented in discrete time according to the following rules common to

all models:

Turnover dynamics: new nodes arrive according to a Poisson process with rate λin and

leave after a random time drawn from an exponential probability distribution with average τ.

After a short initial transient, population size is Poisson distributed with average �V ¼ lint.

Upon admission, a node i is assigned with an activity potential ai, i.e. an activation rate, drawn

at random from a given probability distribution P(a). Any node retains this property through-

out its whole lifespan.

Activation Pattern: each node i becomes active with rate ai. It then receives a number of

stubs drawn from a zero-truncated Poisson distribution with parameter κ—we require active

nodes to engage in at least one contact. The average number of stubs, computed among active
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nodes, is thus given by κ/(1 − e−κ), and the average degree can be computed by the latter quan-

tity multiplied by the average activity potential. The active status lasts for a single time step.

Stub-matching: stubs are then matched according to the actual model considered.

We now describe in detail each network model:

HOM: in this model each node has the same probability aH to be active during each time

step; the activity distribution is thus P(a) = δ(a − aH), where δ(x) is the Dirac’s delta function.

Stubs are matched completely at random in order to form links, according to a configuration

model [33]. We discard eventual self-links and multiple links that may occur during the

matching procedure.

HET: here each node i has its own activity rate ai, drawn from a power-law distribution

P(a)/ a−γ, with a 2 (�, 1]. We tune the variance by varying γ—lower γ higher variance. We

then set � to have the average activity �a equal to aH in HOM. Stub-matching procedure is the

same as in HOM. HET model is thus a variant of the activity driven model introduced in [34]

with the difference that here contacts are created only among active individuals.

COM: incoming nodes are assigned to one among nC communities with equal probability—

so that communities have the same size on average—and belong to the same community

throughout their whole lifespan. Stubs are matched according to the community each node

belongs to. Precisely, any stub is matched either with another stub of the same community,

with probability pIN, or with a stub of a different community, with complementary probability.

Here the stub-matching procedure results in a larger number of lost links—to eliminate multi-

ple links and self-loops—compared to HOM and HET, due to the difficulty in matching stubs

within small groups. Thus, the parameter κ has to be adjusted manually to recover the same

average degree as in HOM and HET. Each node has the same activity potential aH as in HOM.

Hospital network and null model

We use a dynamical contact network obtained from CPI data collected during the i-Bird study

in a French hospital. Details of the network are already reported in [16]. Briefly, the dataset

describes contacts occurring between 592 individuals from July to November 2009. The study

involved both patients and health-care workers, distributed in 5 wards, as well as hospital ser-

vice staff. Every participant wore a wireless device designed to broadcast a signal every 30 s

containing information about its ID. Signal strength was tuned so that only devices within a

small distance (around 1.5 m) were able to register a contact. CPIs were finally aggregated

daily, keeping the information about their cumulative duration within each day.

We discard CPIs relative to the first 2 weeks and the last 4 weeks of dataset, corresponding

to a period of adjustments in the measurements and progressive dismissal of the experiment,

respectively. Simulations conducted with the CPIs network were compared with results

obtained with a null model which we refer to as RAND. According to this randomization

scheme the activity of a node is randomized while respecting the constraint that removal and

addition of contacts must not alter the time of the first and the last contact of each node (tS
and tL respectively). Notice that RAND preserves the number of nodes that are present at any

time in the network by preserving their first contact tS and their length of stay tL − tS. Null

models randomizing the latter properties lead to misleading results when node length of stay is

heterogeneous and node turnover occurs [70]. RAND also sets all contact weights equal to the

average weight value.

Spreading simulations

Spreading dynamics is stochastic and is performed in discrete time. At each time step of dura-

tion Δt, we update the state of each node: each infected node transmits the strain it is carrying
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to a susceptible neighbor with probability βΔt and it turns susceptible with probability μΔt.
Notice that due to mutual exclusion, an individual can be infected by a single strain at a time

[71]. Strain injection is given by the combination of two processes: incoming individuals bring

a new strain with probability ps, and susceptible individuals turn infectious with a new strain

with probability qsΔt. The two mechanisms mimic respectively incoming infectious individuals

(e.g. admission of colonized patients) and transmission from an external source (in the hospi-

tal example this corresponds to contacts with individuals that were not participating in the

study). The expected injection rate, which accounts for both introduction mechanisms, is thus

given by i ¼ linps þ
�Sqs, where �S is the average number of susceptible individuals at the equi-

librium. In the theoretical analysis in the main paper we assumed qs = 0 for simplicity, thus

variations in ι were induced by variations in λin and ps. The case qs> 0 was considered in the

supporting information.

Simulations on synthetic networks differ from those on the hospital network in the combi-

nation of the spreading and network dynamics. In the synthetic network case, at each time

step of duration Δt = 1h, both network and spreading dynamics are simulated one after the

other. On average, λinΔt new nodes enter in the population per time step, while existing nodes

can leave with probability Δt/τ. Nodes then form contacts according to the specific generative

network algorithm. Eventually, transmission and recovery are simulated as explained above.

In order to reconstruct the equilibrium dynamics we run simulations for a sufficiently long

time span, discarding a transient time of 4 � 104 time steps. We verified that the dynamical

properties at the equilibrium are unaffected by initial conditions.

For the hospital example, the network is an external parameter fed into the simulations.

Contacts were aggregated daily keeping the information of their total duration. We used this

information by considering a weighted network with the link weight, wij, representing the

number of contacts of duration 30 s registered during the day between i and j. We then

assumed Δt = 1 day and computed the probability of infection depending on the weight as

1 � ð1 � bdÞ
wij , with δ = 30 s. We initialized the system with the same configuration observed

in the data, i.e. the initial status for each node is set according to S. aureus carriage during the

starting week. Simulation length is bound to the hospital contact network duration.

In order to facilitate the comparison between the synthetic and the real scenarios, parame-

ters of the network models were set based on the properties of the hospital network. The aver-

age size, the average activity potential and the average degree were set equal to the values

estimated from the hospital network, i.e. �V ¼ 306, �a ¼ 0:28, �k ¼ 0:89 respectively. For the

COM model the number of communities (nC = 6) and one of the two explored values of pIN

(pIN = 0.78) were also informed by the data. Additional values of �V and pIN were also tested.

Epidemiological parameters were informed by the data in some cases—ps = 0.079 as computed

from carriage data -, or chosen among plausible values for the S. aureus colonization—i.e. μ−1,

that was set equal to either 21 or 35 days with other values from 14 to 49 days explored in the

supporting information. Values of β were explored systematically. For consistency, values of

rates throughout the manuscript were always expressed per hour.

Analysis of carriage data

Carriage data was obtained from weekly swabs in multiple body areas, including the nares.

Swabs that resulted positive to S. aureus were further examined. Spa-type and antibiotic resis-

tance profiles (MSSA or MRSA) were then determined. In this work we regard two strains as

different if they differ in spa-type and/or antibiotic resistance profile. We considered carriage

data obtained from nasal swabs dismissing other body areas since the anterior nares represent

the most important niche for S. aureus [72].
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Ecological measures and other indicators

We described strain population diversity through standard ecological indicators. The abun-

dance of a strain i, Ni, is the strain-associated prevalence. From this quantity we computed the

relative abundance, fi ¼
NiP

i
Ni

, and the relative abundance distribution, being the frequency

of strains with relative abundance f. The Berger-Parker index is the relative abundance of the

dominant strain, i.e. maxi fi.
To analyze repartition of strains across communities we use the Inverse Participation Ratio

(IPR) [55]. The general definition of this quantity is the following. Given a vector~v with l com-

ponents {vi}i=1,. . .,l, all within the range [0, 1], the IPR is given by:

IPR ¼
Xl

i¼1

v4

i : ð2Þ

If all the components are of the order (l−1) then the IPR is small. Instead if one component

vi� 1 then IPR� 1 too, reflecting localization of~v. The IPR for total prevalence is computed

by setting vi equal to the fraction of infected individuals belonging to community i = 1, . . ., l =

nC, while the IPR for a single strain is computed by setting vi equal to the fraction of individuals

infected by that particular strain and belonging to community i. We can extend the IPR com-

putation to HOM case by assigning nodes to different groups as in COM but without affecting

the stub-matching scheme.

Analytical results for the homogeneous network

In order to estimate the value of the length of stay maximizing the average richness for a given

value of β when the contact structure is given by the HOM network we consider a homoge-

neous mixing version of our system.

Due to Eq (1) the calculation of the average richness reduces to the calculation of the aver-

age persistence time. In order to estimate such quantity we focus on a particular strain, labelled

as “strain A”, which is injected at t = 0 and we group all other strains under the label “strain B”.

We are allowed to do so because all strains have identical parameters. We therefore reduce our

initial, multi-strain problem, to a two-strain problem. Since all new strains that will be injected

after t = 0 will be labeled as strain B, it is clear that A is doomed to extinction since there exists

an infinite reservoir of B. The average time to extinction is therefore the average time to extinc-

tion of strain A.

Since HOM network realizes quite well homogeneous mixing conditions we regard our sys-

tem as homogeneously mixed. Within this framework it is sufficient to specify the numbers of

hosts infected by strain A (nA), hosts infected by strain B (nB) and susceptible hosts (ns). The

master equation for the joint probability distribution P(nA, nB, ns) is given by [73]:

_PðnA; nB; nsÞ ¼ b
0 �V � 1ðnA � 1Þðns þ 1ÞPðnA � 1; nB; ns þ 1Þ

þb
0 �V � 1ðnB � 1Þðns þ 1ÞPðnA; nB � 1; ns þ 1Þ

þmðnA þ 1ÞPðnA þ 1; nB; ns � 1Þ þ mðnB þ 1ÞPðnA; nB þ 1; ns � 1Þ

þloutðnA þ 1ÞPðnA þ 1; nB; nsÞ

þloutðnB þ 1ÞPðnA; nB þ 1; nsÞ þ loutðns þ 1ÞPðnA; nB; ns þ 1Þ

þlout
�VpsPðnA; nB � 1; nsÞ þ lout

�V ð1 � psÞPðnA; nB; ns � 1Þ

� ½ðnA þ nBÞðb
0 �V � 1ns þ mÞ þ loutðnA þ nB þ nsÞ þ lout

�V �PðnA; nB; nsÞ;

ð3Þ

Where b
0
¼ b�k. Terms appearing on the right-hand side of the equation represent the
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probability flow associated to each transition event. The first four terms describe, in order, the

infection due to strain A, the infection due to strain B, the recovery from A and the recovery

from B. The remaining terms are then associated to the discharge of either one of the three

types of individuals—infected with A, infected with B and susceptibles—and to the admission

of infected of type B and susceptibles respectively. In order to obtain some approximate solu-

tion to this equation we assume that the average number of individuals nA + nB + ns and the

total prevalence nA + nB do not fluctuate in time and are therefore equal to �V and ið1Þ �V
respectively, where i(1) is given by:

ið1Þ ¼
b
0
� m � lout þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb
0
� m � loutÞ

2
þ 4b

0
loutps

q

2b
0

: ð4Þ

After performing the Van-Kampen size expansion we are left with a Fokker-Planck equa-

tion for the density of A f x ¼ nA
�V

� �
¼ PðnAÞ:

@t f ¼ � @x D1ðxÞfð Þ þ
1

2 �V
@

2

x D2ðxÞfð Þ; ð5Þ

where D1 = β0 (1 − i(1)) x − μ − λout and D2 = β0 (1 − i(1)) x + μ + λout are the so-called drift

and diffusion coefficients respectively.

According to the theory of stochastic processes [73] the average extinction time Tpers(x0)

(where x0 represents the initial density of strain A) satisfies:

D1ðx0Þ
d

dx0

Tpers þ
1

2 �V
D2ðx0Þ

d2

dx2
0

Tpers ¼ � 1; ð6Þ

with boundary conditions Tpers(0) = 0 and
d

dx0

Tpersðið1ÞÞ ¼ 0. The solution is finally given by:

Tpersðx0Þ ¼
ið1Þ
loutps

Eið� aið1ÞÞðeax0 � 1Þ � eax0Eið� ax0Þ þ lnðax0Þ þ gE½ �; ð7Þ

where Ei(x) is the exponential integral function and γE is Euler-Mascheroni constant. When a

new strain is introduced its prevalence is just 1, therefore we estimate the average extinction

time using Tpersðx0 ¼
�V � 1Þ.

Supporting information

S1 Text. Multi-strain model with heterogeneous recovery classes. This file contains addi-

tional information about simulations with individuals grouped into classes with different

recovery rates.

(PDF)

S1 Fig. Richness and Berger-Parker index as a function of transmissibility for HOM, HET,

COM and COM+HET models. Each model is displayed on a different column. HET is char-

acterized by activity distribution exponent γ = 0.7. COM+HET model is simulated using the

same activation pattern as in HET with γ = 0.7 and the same stub-matching procedure as in

COM. We consider the case pIN = 0.99. The first two rows correspond to ps = 0.01, whereas

the last two to ps = 0.079. For each scenario we show the median (solid line), as well as 50%

and 95% CI (shaded areas).

(PNG)

S2 Fig. Summary indicators of the persistence time distribution as a function of transmis-

sibility for both HOM and HET models. HOM and HET are displayed in blue and green
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respectively. (A), (B) and (C) display distribution’s average, coefficient of variation and skew-

ness, respectively. Other parameters are as in Fig 2 in the main text.

(PNG)

S3 Fig. Shannon evenness for HOM model and two instances of HET model. HOM is

depicted in blue, whereas instances of HET model with activity distribution exponent γ = 2.5

and γ = 0.7 are depicted in orange and green respectively. Shaded blue area represents standard

deviation for HOM. We introduce the relative abundance of the i-th strain: ni ¼ Ni

.P
i Ni,

with Ni the abundance of the strain i (i.e. the number of infected with strain i). Shannon

evenness is defined as the normalized Shannon entropy SðfnigÞ ¼ � N � 1P
i ni lnni, with

N ¼ lnNS. Parameters are the same as in Fig 1 in the main text.

(PNG)

S4 Fig. Impact of network size. Richness (A,B), average persistence time (C,D), prevalence

(E,F) and Berger-Parker index (G,H) as a function of transmissibility for both HOM and HET

models (first and second columns respectively). For each value of �V we compute ps to have the

strain injection rate, �Vps, the same across the different networks. Other parameters are as in

Fig 2 of the main paper. Increasing network size results in a larger number of co-circulating

strains, while the re-scaled prevalence and the Berger-Parker index are almost independent of

�V . Notice that increasing network size does not lead to any qualitative change in the relation

between HOM and HET.

(PNG)

S5 Fig. Relative abundance distribution in varying network size for HOM and HET mod-

els. HOM and HET are depicted in blue and green respectively. For each value of �V we com-

pute ps to have the strain injection rate, �Vps, the same across the different networks. Other

parameters are as in Fig 2 of the main paper.

(PNG)

S6 Fig. Richness for the different network models with transmission from an external source.

The frequency of transmissions from an external source is tuned by qs, which we set here to

0.0002. (A) Richness for HOM model (blue markers) and HET model with activity distribution

exponent γ = 0.7 (green markers). Here ps = 0.079. (B) Richness index for HOM model (blue

markers) and COM model with within-community connection probability pIN = 0.99 (green

markers). Here ps = 0.01. (C) Richness as a function of β and τ for HOM model. Here ps = 0.079.

(PNG)

S7 Fig. Multi-strain dynamics when recovery rate is heterogeneous across individuals.

Here, each node belongs to one out of three classes according to its recovery rate—see descrip-

tion in the dedicated section of this supporting information. We compare HOM (blue), HET

(green), COM (red) models with and without heterogeneity in the recovery rate (triangles and

circles respectively). Panels show prevalence (A), richness (B) and Berger-Parker index (C).

Other parameters are like in Figs 1, 2 and 3 in the main paper (γ = 0.7 for HET and pIN = 0.99

for COM).

(PNG)

S8 Fig. Average persistence time for HOM in varying transmissibility and length of stay.

The quantity is computed from the simulations. The dashed gray line represents a linear trend

as a guide to the eye. Parameters are the same as in Fig 4 in the main text.

(PNG)
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S9 Fig. Comparison between simulations for HOM model and analytical predictions

obtained using the Fokker-Planck framework. Solid lines represent average richness

obtained by using Eqs (1) and (7) from the main text while dots represent simulations results.

Here β = 0.04 while other parameters are the same as in Fig 4 in the main text.

(PNG)

S10 Fig. Prevalence vs richness for several values of the infectious period and using the

CPI network. The value of qs is the same for the curve highlighted in Fig 5B in the main text,

qs = 0.00018. Here dot size is proportional to the magnitude of β.

(PNG)
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Böelle, Chiara Poletto.

References
1. Schiffman M, Castle PE. Human Papillomavirus: Epidemiology and Public Health. Archives of Pathol-

ogy & Laboratory Medicine. 2003; 127(8):930–934.

2. Weinberger DM, Malley R, Lipsitch M. Serotype replacement in disease after pneumococcal vaccina-

tion. The Lancet. 2011; 378(9807):1962–1973. https://doi.org/10.1016/S0140-6736(10)62225-8

3. Bogaert D, de Groot R, Hermans P. Streptococcus pneumoniae colonisation: the key to pneumococcal

disease. The Lancet Infectious Diseases. 2004; 4(3):144–154. https://doi.org/10.1016/S1473-3099(04)

00938-7 PMID: 14998500

4. Atkins KE, Lafferty EI, Deeny SR, Davies NG, Robotham JV, Jit M. Use of mathematical modelling to

assess the impact of vaccines on antibiotic resistance. The Lancet Infectious Diseases. 2017. https://

doi.org/10.1016/S1473-3099(17)30478-4 PMID: 29146178

5. Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev

Microbiol. 2009; 7(9):629–641. https://doi.org/10.1038/nrmicro2200 PMID: 19680247

6. Reich NG, Shrestha S, King AA, Rohani P, Lessler J, Kalayanarooj S, et al. Interactions between sero-

types of dengue highlight epidemiological impact of cross-immunity. J R Soc Interface. 2013; 10(86).

https://doi.org/10.1098/rsif.2013.0414 PMID: 23825116

7. Cohen T, Colijn C, Murray M. Modeling the effects of strain diversity and mechanisms of strain competi-

tion on the potential performance of new tuberculosis vaccines. Proc Natl Acad Sci U S A. 2008; 105

(42):16302–16307. https://doi.org/10.1073/pnas.0808746105 PMID: 18849476

8. Melnyk AH, Wong A, Kassen R. The fitness costs of antibiotic resistance mutations. Evol Appl. 2015; 8

(3):273–283. https://doi.org/10.1111/eva.12196 PMID: 25861385

9. Opatowski L, Varon E, Dupont C, Temime L, van der Werf S, Gutmann L, et al. Assessing pneumococ-

cal meningitis association with viral respiratory infections and antibiotics: insights from statistical and

Host contacts shape strain diversity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006530 May 21, 2019 19 / 23



mathematical models. Proceedings Biological Sciences. 2013; 280(1764):20130519. https://doi.org/10.

1098/rspb.2013.0519 PMID: 23782877

10. Boucher HW, Corey GR. Epidemiology of Methicillin-Resistant Staphylococcus aureus. Clin Infect Dis.

2008; 46(Supplement_5):S344–S349. https://doi.org/10.1086/533590 PMID: 18462089

11. Cobey S, Lipsitch M. Niche and neutral effects of acquired immunity permit coexistence of pneumococ-

cal serotypes. Science. 2012; 335(6074):1376–1380. https://doi.org/10.1126/science.1215947 PMID:

22383809

12. Murall CL, Bauch CT, Day T. Could the human papillomavirus vaccines drive virulence evolution? Proc

R Soc B. 2015; 282(1798):20141069. https://doi.org/10.1098/rspb.2014.1069 PMID: 25429011

13. Aanensen DM, Feil EJ, Holden MTG, Dordel J, Yeats CA, Fedosejev A, et al. Whole-Genome Sequenc-

ing for Routine Pathogen Surveillance in Public Health: a Population Snapshot of Invasive Staphylococ-

cus aureus in Europe. mBio. 2016; 7(3):e00444–16. https://doi.org/10.1128/mBio.00444-16 PMID:

27150362

14. Lemey P, Rambaut A, Bedford T, Faria N, Bielejec F, Baele G, et al. Unifying Viral Genetics and Human

Transportation Data to Predict the Global Transmission Dynamics of Human Influenza H3N2. PLoS

Pathog. 2014; 10(2):e1003932. https://doi.org/10.1371/journal.ppat.1003932 PMID: 24586153

15. Donker T, Reuter S, Scriberras J, Reynolds R, Brown NM, Török ME, et al. Population genetic struc-

turing of methicillin-resistant Staphylococcus aureus clone EMRSA-15 within UK reflects patient

referral patterns. Microbial Genomics. 2017; 3(7). https://doi.org/10.1099/mgen.0.000113 PMID:

29026654

16. Obadia T, Silhol R, Opatowski L, Temime L, Legrand J, Thiébaut ACM, et al. Detailed Contact Data and
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S1 Text: Multi-strain model with heterogeneous recovery classes
In order to test the robustness of our results to the case in which more detailed and realistic
ingredients are accounted for, we consider the case in which the recovery rate is heterogeneous
across individuals. This mimics a relevant aspect of bacterial colonization, as in e.g. S. aureus
case. In [1] individuals were subdivided in three main classes with very different carriage duration,
i.e. non-carriers, intermittent carriers and persistence carriers. Similarly, we assumed three classes
of individuals characterized by different recovery probability per time step, i.e. µ(1) = 1, µ(2) =
1.3·10−3 and µ(3) = 6.9·10−4. Nodes are distributed in the three classes with probability p(1) = 0.5,
p(2) = 0.3 and p(3) = 0.2 [1]. Notice that individuals in the first class recover immediately after a
single time step. Recovery rates are chosen so that the average carriage period matches the value
used in the main paper.

References
[1] Qiuzhi Chang, Marc Lipsitch, and William P. Hanage. Impact of Host Heterogeneity on the

Efficacy of Interventions to Reduce Staphylococcus aureus Carriage. Infect Control Hosp Epi-
demiol, 37(2):197–204, February 2016.
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S1 Fig : Richness and Berger-Parker index as a function of transmissibility for HOM,
HET, COM and COM+HET models. Each model is displayed on a different column. HET
is characterized by activity distribution exponent γ = 0.7. COM+HET model is simulated using
the same activation pattern as in HET with γ = 0.7 and the same stub-matching procedure as in
COM. We consider the case pIN = 0.99. The first two rows correspond to ps = 0.01, whereas the
last two to ps = 0.079. For each scenario we show the median (solid line), as well as 50% and 95%
CI (shaded areas).

2



S2 Fig : Summary indicators of the persistence time distribution as a function of
transmissibility for both HOM and HET models. HOM and HET are displayed in blue
and green respectively. (A), (B) and (C) display distribution’s average, coefficient of variation and
skewness, respectively. Other parameters are as in Fig 2 in the main text.

S3 Fig : Shannon Evenness for HOM model and two instances of HET model. HOM
is depicted in blue, whereas instances of HET model with activity distribution exponent γ = 2.5
and γ = 0.7 are depicted in orange and green respectively. Shaded blue area represents standard
deviation for HOM. We introduce the relative abundance of the i-th strain: ni = Ni

/∑
iNi, with

Ni the abundance of the strain i (i.e. the number of infected with strain i). Shannon evenness
is defined as the normalized Shannon entropy S({ni}) = −N−1

∑
i ni lnni, with N = lnNS .

Parameters are the same as in Fig 1 in the main text.
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S4 Fig : Impact of network size. Richness (A,B), average persistence time (C,D), prevalence
(E,F) and Berger-Parker index (G,H) as a function of transmissibility for both HOM and HET
models (first and second columns respectively). For each value of V̄ we compute ps to have the
strain injection rate, V̄ ps, the same across the different networks. Other parameters are as in Fig
2 of the main paper. Increasing network size results in a larger number of co-circulating strains,
while the re-scaled prevalence and the Berger-Parker index are almost independent of V̄ . Notice
that increasing network size does not lead to any qualitative change in the relation between HOM
and HET.
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S5 Fig : Relative abundance distribution in varying network size for HOM and HET
models. HOM and HET are depicted in blue and green respectively. For each value of V̄ we
compute ps to have the strain injection rate, V̄ ps, the same across the different networks. Other
parameters are as in Fig 2 of the main paper.

S6 Fig : Richness for the different network models with transmission from an exter-
nal source. The frequency of transmissions from an external source is tuned by qs, which we
set here to 0.0002. (A) Richness for HOM model (blue markers) and HET model with activity
distribution exponent γ = 0.7 (green markers). Here ps = 0.079. (B) Richness index for HOM
model (blue markers) and COM model with within-community connection probability pIN = 0.99
(green markers). Here ps = 0.01. (C) Richness as a function of β and τ for HOM model. Here
ps = 0.079.
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S7 Fig : Multi-strain dynamics when recovery rate is heterogeneous across indi-
viduals. Here, each node belongs to one out of three classes according to its recovery rate - see
description in the dedicated section of this supporting information. We compare HOM (blue),
HET (green), COM (red) models with and without heterogeneity in the recovery rate (triangles
and circles respectively). Panels show prevalence (A), richness (B) and Berger-Parker index (C).
Other parameters are like in Fig 1, Fig 2 and Fig 3 in the main paper (γ = 0.7 for HET and
pIN = 0.99 for COM).

S8 Fig : Average persistence time for HOM in varying transmissibility and length
of stay. The quantity is computed from the simulations. The dashed gray line represents a linear
trend as a guide to the eye. Parameters are the same as in Fig 4 in the main text.
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S9 Fig : Comparison between simulations for HOM model and analytical predictions
obtained using the Fokker-Planck framework. Solid lines represent average richness obtained
by using Eq (1) and Eq (7) from the main text while dots represent simulations results. Here
β = 0.04 while other parameters are the same as in Fig 4 in the main text.

S10 Fig : Prevalence vs richness for several values of the infectious period and using
the CPI network. The value of qs is the same for the curve highlighted in Fig 5B in the main
text, qs = 0.00018. Here dot size is proportional to the magnitude of β.

7
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FIGURE 3.1: S. aureus carriage data during the I-Bird study. (A) Weekly
number of carriers associated to each S. aureus strain. Each color corre-
sponds to a different strain; all time series have been stacked together. (B)

Weekly richness. (C) Weekly Berger-Parker index.

3.5 Additional results: neutral dynamics

3.5.1 Domination time and attack rate

In Section 3.4 we characterized strain ecosystems in terms of diversity measures, includ-
ing species richness and Berger-Parker index. In this section we investigate the statistics
of additional ecological measures in order to better understand the role of contact hetero-
geneities on diversity in synthetic contact networks.

In particular, we considered the domination time Tdom, defined as the time spent by a
given strain at the top of the abundance ranking, and the attack rate AR, defined as the
number of cases generated by a given strain during its whole lifespan. In other words,
AR represents the cumulative incidence of a particular strain. Fig. 3.2 A, B, C show re-
spectively the average value, the standard deviation and the coefficient of variation (CoV)
of Tdom as a function of transmissibility. Remarkably, the average domination time dis-
plays a minimum in correspondence of the epidemic threshold for both HOM and HET,
as shown in Fig. 3.2 A. We also notice that Tdom is on average larger in HET compared
to HOM. At the same time, however, the average attack rate is smaller in HET com-
pared to HOM (Fig. 3.2 D). These two results provide further support to our hypothesis
about the twofold role played by hubs. On one hand, hubs act as super-spreaders, boost-
ing the spread of certain strains and favoring dominance. On the other hand, they act
as super-blockers towards incoming strains, hence the smaller average attack rate. Our
conclusions are further confirmed by the distributions of both Tdom and AR which, as
evidenced by Fig. 3.2 B,C,E,F, display larger variability in HET compared to HOM. The
increased variability in the number of cases in HET reflects observed dominance patterns:
a few dominant strains are able to generate many cases while the majority of them hardly
generates even a single case. The larger fraction of strains generating none or very few
cases explains also the smaller average number of cases observed in HET.
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FIGURE 3.2: Domination time and attack rate statistics. (A-C) show the
average value, standard deviation and coefficient of variation of the dom-
ination time Tdom for HOM (blue) and HET (green) as a function of trans-
missibility. (D-F) show the average value, standard deviation and coeffi-
cient of variation of the attack rate AR. Parameters are the same as in Fig. 1

of the main paper, reported in Section 3.4.

3.5.2 Impact of bursty contacts on strain diversity

As seen in Chapter 2, individual contact sequences extracted from empirical contact net-
works usually display bursty behavior. HOM and HET models, which were introduced
in Section 3.4, result however in individual ICT sequences that are geometrically dis-
tributed.

Here we assess the impact of bursty contact behavior on strain ecology by introducing
a general family of generative models which includes HOM and HET as particular cases.
The generative algorithm is akin to that introduced in [244] and requires the ICT distribu-
tion to be specified a priori. In practice, once a node activates its next ICT is drawn from
a distribution PICT(t). HOM and HET correspond both to a geometric ICT distribution;
however, while in HOM all nodes share the same activity potential, in HET the latter is
heterogeneous.

We introduce the model BURSTY, which is characterized by a heterogeneous ICT dis-
tribution PICT(t) = C0t−ω with t ∈ [1, . . . , tmax]. In order to make a fair comparison with
HOM model, we require that BURSTY and HOM share the same average fraction of ac-
tive nodes or, equivalently, the same average activation probability. We achieve this by
first setting the values of C0, ω and tmax such that BURSTY and HOM share the same
average ICT (PICT needs also to be correctly normalized). We thus require that:

t̄ = ∑
t

tPICT(t) = a−1
H . (3.2)

If the population was not affected by turnover, Eq. (3.2) would also guarantee, after an
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FIGURE 3.3: Comparison between HOM and BURSTY models. Here we
consider an instance of BURSTY with tmax = 1000 and ω = 2.1. Here we
compare HOM (blue) and BURSTY (green) in terms of (A) richness, (B)
prevalence and (C) Berger-Parker index. Other parameters are the same as

in Fig. 1 of the main paper, reported in Section 3.4.

initial transient, equality between BURSTY’s and HOM’s average activation probabilities.
Indeed, in BURSTY one needs to wait individual activity sequences to equilibrate in order
to identify the average activation probability with t̄. In HOM, instead, the activation
probability is always identically equal to aH because of the memoryless property of the
geometric distribution. However, equilibration cannot occur in BURSTY as far as node
turnover is concerned. Specifically, because each node is removed after τ time steps on
average, individual activity sequences do not have “enough time" to equilibrate.

A possible solution is to assume that each individual activity sequence is already at
equilibrium when the corresponding node joins the network. We can ensure equilibrium
at all times by slightly modifying the generative algorithm: when a new node joins the
network, we sample its very first ICT from the (equilibrium) waiting time distribution
Pw

ICT(t) rather than from PICT [302]. The waiting time is defined as the time interval
between current time and the next activation, and its distribution is given by:

Pw
ICT(t) =

∑∞
t′=t+1 PICT(t′)

t̄
, (3.3)

successive ICTs are instead sampled from PICT as usual. This recipe guarantees that the
fraction of active nodes in the network is equal to t̄−1 at all times, irrespective of node
turnover. Note that this algorithm is valid for any desired PICT, not only for the one used
in BURSTY. For the case of HOM and HET models, where each node’s ICT distribution is
geometric (given its activity potential a), we have for example that Pw

ICT(t|a) = PICT(t|a).
In Fig. 3.3 we compare HOM and BURSTY. We find that burstiness has a similar effect

to that of activity heterogeneities in that they both lower prevalence and richness while
increasing the Berger-Parker index.
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3.6 Additional results: non-neutral dynamics

3.6.1 Simulation results

So far we have assumed that the dynamics is neutral, i.e. that all strains share the same
epidemiological parameters. In this section we present preliminary results about the case
of strains differing in terms of transmissibility. The modeling framework is essentially the
same as the one considered so far in this chapter (see Appendix A), except for the number
of strains, which is now assumed to be finite. More precisely, we consider a finite pool of
S strains whose transmissibilities βi, i = 1, . . . , S are identically and independently dis-
tributed Gaussian random variables with mean β0 and variance σ2 (eventually truncated
in the range [0, 1]). The neutral case is recovered by setting σ = 0. Transmissibilities are
sampled only once at the beginning of each simulation. Once a new individual is admit-
ted, it has a probability ps to be already carrying a strain, which is chosen at random from
the pool.

We performed extensive numerical simulations on both homogeneous and heteroge-
neous synthetic contact networks (see Appendix B for a definition of contact networks
considered here) and for increasing magnitude of fitness heterogeneities σ. Remarkably,
we found that the strain ecosystem displays two different regimes according to σ. Be-
low a critical value σc, macro-ecological indicators such as total prevalence, richness and
Berger-Parker index are essentially independent from σ. However, as soon as σ crosses a
critical value σc the ecosystem undergoes a “condensation" phenomenon where a highly
transmissible strain becomes dominant by acquiring a finite fraction of total prevalence.
This is evidenced by the Berger-Parker index, which sharply increases as σ is increased
past σc. We denote the critical value σc as the condensation threshold.

In Fig. 3.4 we show the average Berger-Parker index for both homogeneous and het-
erogeneous contact networks as a function of β0 and σ/β0 and for several values of the
injection probability. The Berger-Parker index is almost constant for σ smaller than σc

(white dots), while it increases sharply right after such critical value.
We also observe that heterogeneous contact networks provide a lower condensation

threshold compared to the homogeneous scenario. Thus, contact heterogeneities not only
promote dominance in the neutral scenario but also promote the transition to the con-
densed regime.

3.6.2 Analytical derivation of the condensation threshold

Here we provide a mathematical derivation of the condensation threshold. For the sake
of clarity, we consider here the case of random mixing. The general derivation for a larger
class of synthetic contact structures can be found in Appendix B.

We begin by partitioning strains in classes according to their transmissibility. We thus
define the density I(β, t) of infectious individuals carrying strains with transmissibility
in the range [β, β + dβ]. This quantity evolves in time according to:
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FIGURE 3.4: Berger-Parker index and the condensation phenomenon.
Berger-Parker index for homogeneous (first row) and heterogeneous (sec-
ond row) contact networks; details about both networks can be found in
Appendix B. Each column corresponds to a different value of ps. The
white dotted line corresponds to the condensation threshold obtained from
Eq. (B.12). Parameters: S = 100, µ−1 = 21 Days, τ = 10 Days. The average

activity is aH = 0.3, while the average degree of active nodes is k̃ = 3.

d
dt

I(β, t) = λin psρ(β)− (λout + µ)I(β, t) + βk̄S(t)I(β, t) , (3.4)

where S(t) = 1−
∫

dβ I(β, t) is the fraction of susceptible individuals. By introducing the
dimensionless quantities α = λin ps/(λout + µ) and ω = βk̄/(λout + µ) and by setting the
left hand side of Eq. (3.4) to zero, we obtain a set of equations satisfied by the stationary
distribution I(β):

αρ(β)− I(β) + ωSI(β) = 0 , (3.5)

which admits the solution:

I(β) =
αρ(β)

1−ω(1− I)
. (3.6)

By integrating over β we obtain a self-consistence condition that implicitly determines
total prevalence:

I =
∫

dβI(β) =
∫

dβ
αρ(β)

1−ω(1− I)
. (3.7)

The quantity I(β) represents the probability that a randomly selected infected indi-
vidual is carrying a strain with transmissibility β. Therefore I(β) can be regarded as the
“sampling" distribution. As a consequence of the denominator in Eq. (3.6), I(β) is in
general different from the input distribution ρ(β).

The expression (3.6) for I(β) is not new to physicists. In fact, it closely resembles
the Bose-Einstein distribution from quantum physics, which describes the statistics of
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a gas of bosonic particles. In recent years, the Bose-Einstein distribution has found ap-
plications also in theoretical ecology. In particular, it was found to emerge in models
of competing species [303], epistasis [304, 305], quasi-species evolution [306, 307, 308,
309] and influenza evolution [309]. The phenomenology presented here is reminiscent
of the concept of quasi-species in population genetics. According to this analogy, in the
σ < σc regime the pathogen exists as a quasi-species, i.e. as a “cloud" of different strains
maintained by the balance between immigration and selection. In this context, the con-
densation threshold parallels the error threshold concept: as σ > σc, immigration can-
not balance selection anymore and the quasi-species breaks down in favor of a super-fit
strain, eventually accompanied by rarer, less fit immigrant strains.

The main feature of the Bose-Einstein distribution, inherited also by Eq. (3.6), is the
existence of a condensed phase. The latter appears for values of σ larger than some
crossover value σc, i.e. the aforementioned condensation threshold. In order to see this
and to determine σc, we first notice that the denominator in Eq. (3.6) becomes negative
for ω > 1/(1− I). For σ < σc this is not a problem since the bulk of the input distribution
is concentrated far away from such singularity. For σ > σc, however, a significant portion
of ρ(β) lies beyond the singularity and Eq. (3.6) loses its validity because I(β) cannot
be negative. We may thus estimate σc by asking when the tail of the input distribution
extends “too much" beyond the singularity in Eq. (3.6). Mathematically, we find σc by
requiring that the maximum transmissibility over a sample of S strains is on average
equal to (µ + λout)/k̄(1− I):

〈βmax〉S =
µ + λout

k̄(1− I)
. (3.8)

Because transmissibility values are sampled from a Gaussian distribution with average
β0 and variance σ2, we can write:

〈βmax〉 = β0 + ση(S) , (3.9)

where η(S) is the average maximum of S independent Gaussian random variables with
zero mean and unit variance. Note that, in principle, I depends on σ as well; in practice,
however, numerical simulations reveal that I varies slowly with σ within the highly di-
verse regime. This means that we can obtain a good approximation for σc by substituting
I with its counterpart I0 obtained in the purely neutral case (i.e. σ = 0):

I0 =
ω0 − 1 +

√
(ω0 − 1)2 + 4αω0

2ω0
, (3.10)

where ω0 = β0k̄/(µ + λout). By combining Eqs. (3.8), (3.10) and (3.9), we finally obtain
an explicit formula for the condensation threshold:

σc

β0
=

1
η(S)

(
2

ω0 + 1−
√
(ω0 − 1)2 + 4αω0

− 1
)

. (3.11)
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The dependence on the number of strains S is monotonic decreasing since η(S) in-
creases monotonically with S, albeit slowly (asymptotically, η(S) ∼

√
2log(S)). This has

to be expected since the larger S the larger the chances that a highly transmissible strain
appears.

3.6.3 Numerical characterization of the σ < σc regime

The previous analysis reveals that the Berger-Parker index’s qualitative behavior differs
on the two sides of the condensation threshold. Indeed, for σ < σc the Berger-Parker
index is almost constant, whereas as soon as σ crosses σc it sharply increases (see Fig. 3.5
A). We interpreted this behavior as the consequence of the “sudden" appearance, for
values of σ larger than σc, of a dominant strain with high transmissibility.

We found, both numerically and analytically, that the condensation phenomenon
arises from the interplay of competition and immigration strength. On one hand, the
external strain pool seeks to impose its own distribution for β (i.e. ρ(β)) on the meta-
community. On the other hand, competition for hosts selects those strains with larger
fitness. For σ > σc immigration cannot keep up anymore against selection and a dom-
inant strain suddenly appears. It may be, however, that other ecological quantities do
not change suddenly at σc as the Berger-Parker index does. Perhaps there exist ecological
indicators that vary smoothly as σ is increased, bearing signatures of increased selection.

Here, we considered several additional indicators in order to better characterize the
strain ecosystem as σ is varied. First, we computed the average excess transmissibility
β̄exc, which is defined as:

β̄exc =
β̄− β0

β0
, (3.12)

where β̄ =
∫

dβ βI(β) is the average sampled transmissibility. We expect β̄exc to be small
in the σ < σc regime and large in the condensed regime. We see from Fig. 3.5 B that
β̄exc is indeed small in the highly-diverse phase and its behavior is similar to that of the
Berger-Parker index, shown in Fig. 3.5 A.

Next, we computed how much the input distribution ρ(β) differs from the sampling
distribution I(β) in terms of their Kolmogorov-Smirnov distance. The Kolmogorov-
Sminov distance behaves smoothly as a function of σ and it is non-null even in the σ < σc

regime, as can be seen from Fig. 3.5 C. This means that the sampling distribution I(β) car-
ries a significant amount of information about selective forces at play. Nonetheless, using
just its average value discounts most of this information, as evidenced by the analysis of
β̄exc.

Finally, we checked whether there is a statistical correlation between the domination
time and the transmissibility of the strain at the top of the abundance ranking. Intu-
itively, we expect a positive correlation between these two quantities since strains with
larger transmissibility tend to create more cases. The Spearman rank-order correlation
coefficient between domination time and transmissibility indeed indicates a positive cor-
relation, as shown in Fig. 3.5 D. Additionally, the correlation coefficient behaves smoothly
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with σ, reaching relatively large values even in the σ < σc regime. Correlation values for
larger values of σ are not shown since it is difficult to obtain large samples when the same
strain is always dominating.

3.7 Conclusions

In this chapter we investigated the dynamics of multiple strains competing for hosts
through mutual exclusion. We adopted an ecological approach, considering an open
host population subject to importation of new strains from the community. We explicitly
accounted for host-to-host contacts by modeling the host population as a time-varying
network. We showed that contact dynamics plays an important role in shaping strain
ecology; in particular, we showed that contact heterogeneities, arising from, e.g., activity
heterogeneities or from bursty contact behavior, reduce strain diversity, favoring domi-
nance of a few strains even in a neutral scenario. In the case of heterogeneous activity,
hubs are responsible for the loss of diversity, boosting the spread of some strains while
hampering the spread of newly introduced strains. Community structure had the op-
posite effect on diversity, although the magnitude of such contribution was found to be
marginal. Heterogeneities in strain transmissibility did not alter ecological indicators if
sufficiently small in strength. Above a certain threshold, however, we observed a con-
densation phenomenon where a dominant super-fit strain secures a large finite fraction
of infected hosts.

Our results advocate for the importance of host-to-host contacts in shaping strain di-
versity and warn against interpretations of ecological patterns relying on random-mixing
models. Further theoretical research and data analysis are needed in order to better un-
derstand the bias introduced by overlooking contact heterogeneities.

Our modeling framework may shed light on ecological questions that, up until now,
have been usually addressed in the context of two-strain models. For example, the
problem of ecological diversity in large strain communities parallels the problem of co-
existence in two-strain systems. On one hand, this link suggests that mechanisms that
boost co-existence between two strains might also promote diversity in multi-strain mod-
els. On the other hand, however, future research should deal with framing the large body
of results arising from two-strain models in the context of strain community dynamics.

A similar ecological perspective might be applied to pathogens other than S. aureus,
e.g. HPV, S. pneumoniae, N. meningitidis. In this context, more tailored models are required
to describe each specific case. In the case of S. pneumoniae, for example, cross-immunity
between different strains must be accounted for, whereas in the case of HPV co-infection
with multiple types must be allowed, in agreement with empirical observations.

Recruitment of new strains into the population can be driven by mechanisms other
than immigration, e.g. mutation and recombination. This is especially true for viral
species such as influenza, whose seasonal dynamics is driven by cumulative mutations
that enable influenza to continually escape host immunity. When considering longer
time horizons, mutation and recombination should be included as well when modeling
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FIGURE 3.5: Additional ecological indicators. (A) Berger-Parker index,
(B) average excess transmissibility, (C) Kolmogorov-Sminov distance be-
tween ρ(β) and I(β), (D) Spearman rank-order correlation coefficient be-
tween domination time and the transmissibility of the dominant strain for
three different values of β0. Simulations are carried using HOM contact
network. Dashed lines correspond to the analytical condensation thresh-
old obtained using Eq. (3.11) for each value of β0. Parameters: S = 100,

ps = 0.2, µ−1 = 21 Days, τ = 10 Days, aH = 0.3, k̃ = 3.
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the spread of bacteria. These processes can be either neutral from the point of view of the
mutant’s fitness, or they may confer new traits, e.g. drug resistance.
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Chapter 4

The Interplay of Cooperative and
Competitive Interactions

4.1 Introduction

In Chapter 3 we focused on the impact of environmental and host-related factors on the
dynamics of competing strains. However, co-circulating pathogens might interfere with
strain dynamics, altering the outcome of competition. The presence of an additional pa-
thogen may for example cross-regulate the host population through increased mortality
or modify the local immunological landscape [28]. Typically, however, interactions be-
tween different pathogens or between strains of the same pathogen have been studied
separately, making it difficult to draw conclusions about effects of other pathogens on
strain diversity. Additionally, non-trivial effects arising from the interplay of diverse in-
teractions might be missed if the latter are treated in isolation.

Synergistic pathogen-pathogen interactions have been observed in several multi-pa-
thogen systems. For example, the current TB-HIV epidemics that is ravaging Sub-Saharan
Africa is fueled by the synergy between HIV and Tuberculosis [89]. Immunocompro-
mised individuals carrying HIV are more vulnerable to other pathogens as well, includ-
ing P. falciparum [310] and HPV [311]. Analogously, influenza favors secondary bacterial
infections, affecting the spread and burden of S. pneumoniae [312, 85].

In this chapter we investigate the interplay between competitive and cooperative in-
teractions in a simple model with two cooperative pathogens, one of which is further
structured in two strains that compete through mutual exclusion. Cooperation is me-
diated by increased susceptibility towards secondary infections. In the second paper
associated to this thesis [2] we investigate this model both numerically and analytically,
and find that the presence of a cooperative pathogen fundamentally alters competition
between strains, leading to a complex phase diagram. In some cases, our model leads
to seemingly paradoxical behavior; for example, we find that increasing the cooperative
ability of the more transmissible strain can result in its extinction. We find that spatial
structure plays an important role. More in detail, we show by means of numerical simu-
lations that spatial separation can support population-level co-existence of both compet-
ing strains by creating ecological niches. We show that the latter arise dynamically and
select for different trade-offs between transmissibility and cooperative ability.
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This chapter is structured as follows: in Section 4.2 we give an overview of multi-
pathogen, multi-strain systems where multiple interaction types are simultaneously at
play. In Section 4.3 we discuss the role of spatial separation on co-existence of competing
strains in spatially structured populations. Section 4.4 contains the second article associ-
ated to this thesis.

4.2 Pathogen-pathogen interactions and their impact on multi-
strain ecosystems

Several studies highlighted the potential role of pathogen-pathogen interactions in shap-
ing strain diversity. A paradigmatic example is represented by HIV and TB. As seen
in Chapter 1, Sub-Saharan Africa has been recently experiencing a joint TB-HIV epi-
demics [89]. HIV exacerbates almost every aspect of TB infections, increases the risk
of TB acquisition and speeds up re-activation of latent TB infections [90]. HIV has been
suggested to have played a role in the emergence of Multi-Drug Resistant TB (MDR-TB).
Authors in [313] hypothesized that the positive association between HIV and increased
risk of mixed infections with multiple TB strains [314] might promote de novo mutations
conferring resistance. Antibiotic treatment would then purge non-resistant variants and
select for resistant strains.

HIV is known to share a synergy with other pathogens as well. For example, there ex-
ists compelling evidence suggesting that HIV interacts with HPV in multiple ways [311].
HIV-positive individuals are at higher risk of acquiring HPV and experience more persis-
tent HPV infections compared to HIV-negative individuals [315, 316]. HPV may in turn
increase susceptibility to HIV by weakening the epithelial barrier in the genital tract [317,
318]. HIV is known to co-operate also with vector-borne pathogens such as Plasmodium
falciparum: HIV increases susceptibility to P. falciparum while the latter favors HIV trans-
mission by increasing the viral load of the latter [319, 320, 321, 322, 310]. Such synergy
with HIV may affect diversity in P. falciparum strains, which are known to compete for
the same within-host resources, e.g. red blood cells [323].

As discussed in Chapter 1, the ecology of S. pneumoniae is an important factor that
must be accounted for in order to design efficient pneumococcal vaccines. At the same
time, the reasons behind co-existence patters of multiple S. pneumoniae serotypes are not
completely understood. Nasopharyngeal colonization with S. pneumoniae is known to be
affected by other commensal bacteria inhabiting the nasopharynx [324]. While a few bac-
terial species invariably harm S. pneumoniae, e.g. S. aureus, other bacteria share a synergy
with pneumococcus. H. influenzae is known for example to both compete and cooperate
with S. pneumoniae. Competition has been attributed to H. influenzae triggering an innate
immune response against S. pneumoniae in a serotype-specific manner. The population-
level effects of such mechanism on serotype diversity have been investigated in [28]; in
particular, serotype-specific interference by H. influenzae was suggested to promote co-
existence and diversity of S. pneumoniae strain populations by favoring clearance of those
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serotypes with longer carriage duration, effectively reducing their competitive advan-
tage. Nonetheless, several studies report a positive association between H. influenzae and
S. pneumoniae nasal colonization [325, 326, 327, 328]. S. pneumoniae and H. influenzae have
been found to participate to multi-species biofilm formation, which benefits pneumococ-
cus in that it provides passive protection against antibiotics [329, 330].

Positive interactions between viral pathogens could also affect diversity of bacte-
ria colonizing the nasopharynx [85]. Influenza is known for example to enhance the
adhrence of S. pneumoniae and N. meningitidis to epithelial cells, thus increasing host sus-
ceptibility to bacterial colonization. Moreover, influenza infections appear to promote the
progression of S. pneumoniae carriage to disease [331, 332]. Indeed, several works suggest
that influenza-like illnesses are among drivers of seasonal patterns and increased burden
of pneumococcal disease [333, 334, 312, 335].

4.3 Factors affecting co-existence between multiple strains

Two strains that compete for the same set of susceptible hosts through complete mutual
exclusion cannot coexist in the same host population. More in detail, the strain with the
largest fitness value, i.e. with the largest R0, becomes dominant and drives its competi-
tors to extinction, as discussed in Chapter 1. Co-existence is however possible under
certain conditions, e.g. in the case of weak mixing between different host groups [23] and
heterogeneous carriage duration [26]. Very few studies addressed the role of additional
pathogens on strains’ co-existence [28]. Here, we find that co-existence is not possible in
a homogeneously-mixed population even in the presence of the cooperative pathogen –
under the assumption that the amount of increased susceptiblity between A and each B
strain is symmetric –. Instead, competing strains are found to co-exist when host popu-
lation is structured in different communities. Interestingly, co-existence does not result
from spatial structure or cooperation alone, but rather from the interplay of these two
ingredients. To better understand this result in the context of the literature we review
here previous works on multi-strain competition in a spatially-structured environment.

Spatial separation might be accounted for by subdividing hosts into different com-
munities [260]. Sparse connections between different communities reflect geographical
distance between different host groups.

Spatial models are usually classified as either homogeneous or heterogeneous [336].
In the former case, both disease- and host-related parameters are assumed to be uniform
in space, whereas in the latter case they may vary from one location to the other. Spa-
tial heterogeneities might reflect for example varying levels of ecological adaptation to
different communities. Insights from community ecology reveal that spatially homoge-
neous models can yield co-existence between multiple species thanks to trade-offs be-
tween competitive and dispersal abilities [336]. However, competition for the same re-
source prevents any of these trade-offs. As a consequence, spatially homogeneous mod-
els cannot allow for co-existence of mutually-excluding strains. Authors in [260] showed
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that community structure is inefficient at maintaining spatial diversity of cross-reacting
strains, suggesting the presence of some degree of local adaptation.

Spatial heterogeneities in epidemiological parameters may guarantee coexistence by
allowing for the presence of multiple spatial niches where strains can locally out-compete
each other. Authors in [337] have considered for example the case of two competing
strains in two patches with hosts diffusing between patches. By engineering the val-
ues of epidemiological parameters within each patch, persistence of both strains can be
achieved. However, if hosts do not diffuse between patches, co-existence arises only
globally, as each patch becomes occupied by only one strain. It can be shown that coex-
istence at the level of single patches becomes possible if infected individuals are allowed
to disperse between patches. A similar result has been obtained by authors in [338], who
studied competition between two vector-borne pathogens in a multi-patch environment.

4.4 Second article: Interplay between competitive and coopera-
tive interactions in a three-player pathogen system
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Abstract

In ecological systems heterogeneous interactions between pathogens
take place simultaneously. This occurs, for instance, when two pathogens
cooperate, while at the same time multiple strains of these pathogens
co-circulate and compete. Notable examples include the cooperation of
HIV with antibiotic-resistant and susceptible strains of tuberculosis, or
some respiratory infections with Streptococcus pneumoniae strains. Mod-
els focusing on competition or cooperation separately fail to describe how
these concurrent interactions shape the epidemiology of such diseases.
We studied this problem considering two cooperating pathogens, where
one pathogen is further structured in two strains. The spreading fol-
lows a susceptible-infected-susceptible process and the strains differ in
transmissibility and extent of cooperation with the other pathogen. We
combined a mean-field stability analysis with stochastic simulations on
networks considering both well-mixed and structured populations. We
observed the emergence of a complex phase diagram, where the condi-
tions for the less transmissible, but more cooperative strain to dominate
are non-trivial, e.g. non-monotonic boundaries and bistability. Coupled
with community structure, the presence of the cooperative pathogen en-
ables the co-existence between strains by breaking the spatial symmetry
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and dynamically creating different ecological niches. These results shed
light on ecological mechanisms that may impact the epidemiology of dis-
eases of public health concern.

1 Introduction

Pathogens do not spread independently. Instead, they are embedded in a larger
ecosystem that is characterised by a complex web of interactions among con-
stituent elements. Among ecological forces shaping such ecosystems, pathogen-
pathogen interactions have drawn increasing attention during recent years due
to their population-level impact and public health consequences. Recent ad-
vances in serological tests and genotyping techniques have improved our re-
construction of pathogen populations where multiple strains co-circulate, often
competing due to cross-protection or mutual exclusion. Examples include tu-
berculosis [1, 2], Plasmodium falciparum [3], Streptococcus pneumoniae [4, 5]
and Staphylococcus aureus [6, 7]. Polymorphic strains can also interact in more
complex ways, with both competition and cooperation acting simultaneously,
as observed in co-circulating Dengue serotypes [8]. While interfering with each
other, strains also interact with other pathogens co-circulating in the same pop-
ulation. Tuberculosis [1], HPV [9] and P. falciparum [10], for example, appear
to be facilitated by HIV, whereas S. pneumoniae benefits from some bacterial
infections, e.g. Moraxella catarrhalis, and is negatively associated to others
such as S. aureus [11, 12]. Competition, cooperation and their co-occurrence
may fundamentally alter pathogen persistence and diversity, thus calling for a
deep understanding of these forces and their quantitative effects on spreading
processes.

Mathematical models represent a powerful tool to assess the validity and im-
pact of mechanistic hypotheses about interactions between pathogens or pathogenic
strains [13, 14]. The literature on competitive interactions is centered on pathogen
dominance and coexistence. Several factors were found to affect the ecological
outcome of the competition, including co-infection mechanisms [15, 16, 17, 18],
host age structure [19, 20], contact network [21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31] and spatial organisation [32, 33, 34, 35, 36, 37]. At the same time, models
investigating cooperative interactions have driven many research efforts during
recent years [38, 39, 40, 41, 42, 43, 44]. Cooperation has been found to trigger
abrupt transitions between disease extinction and large scale outbreaks along
with hysteresis phenomena where the eradication threshold is lower than the epi-
demic threshold [38, 42, 39]. These findings were related to the high burden of
synergistic infections, e.g. the HIV and tuberculosis co-circulation in many parts
of the world. Despite considerable mathematical and computationally-heavy re-
search on interacting pathogens, competition and cooperation have been studied
mostly separately. Nevertheless, current understandings about these mecha-
nisms taken in isolation may fail to describe the dynamics arising from their
joint interplay, where heterogeneous interactions may shape the phase diagram
of co-existence/dominance outcome, along with the epidemic prevalence.
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Here we studied the simplest possible epidemic situation where these het-
erogeneous effects are at play. We introduced a three-player model where two
pathogens cooperate, and one of the two is structured in two mutually exclusive
strains. This mimics a common situation, where e.g. resistant and susceptible
strains of S. pneumoniae cooperate with other respiratory infections [11], and
allows us to address two important ecological questions:

• How does the interplay between two distinct epidemiological traits, i.e.
the transmissibility and the ability to exploit the synergistic pathogen,
affect the spreading dynamics?

• How does the presence of a synergistic infection alter the co-existence
between competing strains?

We addressed these questions by providing a characterisation of the phase space
of dynamical regimes. We tested different modelling frameworks (continuous
and deterministic vs. discrete and stochastic), and compared two assumptions
regarding population mixing, i.e. homogeneous vs. community structure.

The paper is structured as follows: Section 2 introduces the main aspects of
the three-player model. We provide the results of the deterministic dynamical
equations in Section 3.1, where we present the stability analysis, together with
the numerical integration of the equations, to characterise the phase space of
the dynamics. The structuring of the population in two communities is analysed
in Section 3.2. In Section 3.3 we describe the results obtained within a network
framework comparing stochastic simulations in an Erdős-Rényi and a random
modular network. We discuss the implications of our results in Section 4.

2 The model

A scheme of the model is depicted in figure 1a. We considered the case in which
two pathogens, A and B, follow susceptible-infected-susceptible dynamics, and
we made the simplification that they both have the same recovery rate µ. A
and B cooperate in a symmetric way through increased susceptibility, i.e. a
primary infection by one of the two increases the susceptibility to a secondary
infection by the other pathogen. We assumed that the cooperative interaction
does not affect infectivity, thus doubly infected individuals, i.e. infected with
both A and B, transmit both diseases at their respective infection rates. B is
structured in two strains, B1 and B2, that compete through mutual exclusion
(co-infection with B1 and B2 is impossible) and differ in epidemiological traits.
Specifically, we denoted the infection rates for pathogens A and Bi with α and
βi (i = 1, 2), respectively. We introduced the parameters ci > 1 to represent the
increased susceptibility after a primary infection. In summary, individuals can
be in either one of 6 states: susceptible (S), singly infected (A, Bi) and doubly
infected with both A and Bi. The latter status is denoted by Di.

To simplify the analytical expressions we rescaled time by the average infec-
tious period µ−1, which leads to non-dimensional equations. Then, the param-
eters βi and α becomes the basic reproductive ratio of each respective palyer.
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Figure 1: Scheme of the model. (a) Compartmental model. Coloured
arrows represent transitions occurring due to infection transmission. Dashed
arrows refer to primary infections, while solid arrows refer to secondary ones;
transmission parameters are also reported close to each arrow. Black arrows
represent recovery transitions. (b-d) Schematic representation of the modelling
frameworks and population structures considered. (b) A homogeneously-mixed
population (Section 3.1). (c) Two homogeneous populations with across-group
mixing ruled by the parameter ε (Section 3.2); in (b),(c), colours indicate the
infectious density for each compartment. (d) Erdős-Rényi and random modular
networks (Section 3.3). Colours indicate the nodes’ status.

This implies that the threshold condition βi, α > 1 has to be satisfied in order
for the respective player to be able to individually reach an endemic state. As-
suming a homogeneously mixed population, the mean-field equations describing
the spreading dynamics are:





Ṡ = A+B1 +B2 − αS XA − β1S X1 − β2S X2

Ḃ1 = D1 −B1 − c1αB1XA + β1S X1

Ḃ2 = D2 −B2 − c2αB2XA + β2S X2

Ȧ = D1 +D2 −A+ αS XA − c1β1AX1 − c2β2AX2

Ḋ1 = −2D1 + c1αB1XA + c1β1AX1

Ḋ2 = −2D2 + c2αB2XA + c2β2AX2,

(1)

where the dot indicates a differentiation with respect to time rescaled by µ−1,
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and quantities S, A, Bi and Di represent occupation numbers of the compart-
ments divided by the population. The variables XA, Xi, i = 1, 2, indicate the
total fractions of individuals carrying A and Bi, respectively, among the singly
and doubly infected individuals. They satisfy the equations:

Ẋi = Xiβi(S + ciA)−Xi, (2a)

ẊA = XAα(S + c1B1 + c2B2)−XA. (2b)

Without loss of generality, we considered the case in which the strain B2 is
more transmissible than B1, i.e. δβ = β2 − β1 > 0. Furthermore, we focused on
the more interesting case of trade-off between transmissibility and cooperation
to limit the parameter exploration: The less transmissible strain, B1, is more
cooperative, δc = c1 − c2 > 0. If B2 is more cooperative, we expect it to win
the competition. To summarize, our main assumptions are:

• δβ = β2 − β1 > 0,

• δc = c1 − c2 > 0,

• ci > 1 i = 1, 2.

In the Results section we will first describe the dynamics arising from the
deterministic equations (1). We will then consider the case in which the whole
population is structured in two groups (see figure 1c). Finally, we will apply
the proposed model to contact networks, where nodes represent individuals and
transmission occurs through links, and consider transmission and recovery as
stochastic processes. Two types of networks will be tested: Erdős-Rényi and
random modular networks (see figure 1d).

3 Results

3.1 Continuous well-mixed system

We carried out a stability analysis to classify the outcome of the interaction as a
function of the difference in strain epidemiological traits, δc and δβ . Specifically
we computed explicit analytical expressions for states’ feasibility and stability
conditions in several cases. Furthermore, we performed extensive numerical sim-
ulations in cases where closed expressions were difficult to obtain. We present
the overall behaviour and the main analytical results in this section and we refer
to the Supplementary Material for the detailed calculations. In the following, we
will use square brackets to indicate final state configurations in terms of persist-
ing strains, thus [A&B1] indicates, for instance, the equilibrium configuration
where both A and B1 persist, while B2 becomes extinct.

Figures 2a,b show the location of stable states with two combinations of α,
β2 and c1. Results that are obtained for other parameter values are reported
in figure S1. No co-existence was found between B1 and B2. In principle,
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Figure 2: Phase diagram for the well-mixed system. (a),(b) Stable
equilibria as a function of δβ and δc for two parameter choices, namely (a) α =
0.6, β2 = 1.5, c1 = 4, and (b) α = 0.8, β2 = 1.1, c1 = 7. The three states [B2],
[A&B2] and [A&B1] are indicated in light blue, dark blue and red, respectively.
Hatched regions correspond to bistable and multistable regions. The yellow
curves show the analytical boundaries delimiting stability regions for [A&B1]
and [A&B2], while the white one delimits the [B2]’s region. Notice that for
δc > 3, 6, for panels (a) and (b) respectively, c2 < 1 and the interaction between
B2 and A ceases to be cooperative. This provides naturally a range for x-axis.
In panel (b) transmissibility for B1 is below one for δβ > 0.1. (c) Evolution
of total prevalence for A (grey), B1 (red) and B2 (blue), considering singly
and doubly infected combined. Parameters correspond to the grey and black
star markers in panel (a), i.e. δβ = 0.03 and δc = 0.5, 1.5 in top and bottom
panels, respectively. Dynamical trajectories have been obtained by integrating
equations (1) with initial conditions: Bi(t = 0) = 0.001, A(t = 0) = 0.01.

equations (1) admit a co-existence equilibrium [A&B1&B2]. However, this co-
existence was always found to be unstable in the numerical simulations. Persis-
tence of A is only possible together with one of the B strains. The equilibrium
solution [A] is unfeasible for α < 1 and unstable for α > 1, unless both repro-
ductive ratios, βi, are below the epidemic threshold. Because of the assumption
δβ > 0, B2 outcompetes B1 in absence of A, in agreement with the principle of
competitive exclusion. Therefore the final state [B1] is always unstable, and per-
sistence of B1 is possible only in co-circulation with A. On the other hand, B2

can spread either alone or together with A. Specifically, the [B2] configuration
is feasible for β2 > 1. It is stable if and only if α < αc, with

αc =
β2

c2(β2 − 1) + 1
. (3)

This provides a sufficient condition for the persistence of A. Equation (3) can
be expressed in terms of δc, namely δc > c1 − (β2 − α)/[α(β2 − 1)], which is
visualized as the white boundary in figure 2a,b.

The competition between B1 and B2 is governed by the trade-off between
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transmission and cooperative advantage. This is described by the boundaries of
the [A&Bi] regions that can be traced by combining the feasibility and stability
conditions. These boundaries are plotted in figures 2a,b as dotted and dashed
yellow curves for [A&B1] and [A&B2], respectively. For a solution to be feasible
the densities of all states must be non-negative. For absolute parameter values as
in figure 2a,b we found that this yields the necessary condition αβi > 4(ci−1)/c2i ,
corresponding to the vertical and horizontal segments. On the other hand, the
stability boundary separating [A&Bi] from any state containing Bj (j 6= i) is
given by

βj(S
∗ + cjA

∗)− 1 < 0, (4)

where S∗ and A∗ are the equilibrium densities of S and A, respectively, evaluated
in the configuration [A&Bi]. The left-hand side of the equation represents the
growth rate of the competitor Bj , appearing in equation (2a), and evaluated
in the [A&Bi] state. Thus, the relation (4) expresses the condition for Bj
extinction. Expressed in terms of δc and δβ , the conditions becomes:

[A&B1] :
β2(c1 − δc)
c1(β2 − δβ)

+
β2δc
c1 − 1

(
1−

√
1− 4(c1 − 1)

c21(β2 − δβ)α

)
= 1 (5)

[A&B2] :
c1(β2 − δβ)

β2(c1 − δc)
− δc(β2 − δβ)

c1 − δc − 1

(
1−

√
1− 4(c1 − δc − 1)

β2α(c1 − δc)2

)
= 1.

The intersection among the stability boundaries described above produces
a rich state space. For all tested values of α, β2 and c1, we found a wide
region of the (δc, δβ) space (red-hatched in figures 2a,b) displaying bistability
between the [A&B1] state and a B2-dominant state with either [B2] or [A&B2].
In certain cases, bistability can also occur between the [B2] and [A&B2] states
(blue-hatched region in figure 2b). This has been studied in the past for two
cooperating pathogens [42]. We found that the intersection between the latter
region and the red-hatched region gives rise to a multistable state.

Interestingly, for all tested parameters we found that the boundary of the
[A&B2] stability region is not monotonic. As a consequence, for a fixed δβ a
first transition from the [A&B2] state to [A&B1] is found for small δc values.
An increase of δc leads to a second boundary with a bistable region, where the
dominance of B1 over B2 depends on initial conditions. The transition for small
δc is expected: By increasing B1’s advantage in cooperation, a point is reached
beyond which B1’s disadvantage in transmissibility is overcome. On the other
hand, the second threshold appears to be counter-intuitive. We investigated
it more in depth for the case depicted in figure 2a. We plotted the infectious
population curves as a function of time for each infectious compartment. We
compared δc = 0.5, which corresponds to the [A&B1] stable state (figure 2c top),
and δc = 1.5, which leads to a bistable region (figure 2c bottom), where all other
parameters are as in figure 2a. Figure 2c shows that B1 loses the competition at
the beginning. However, when B2 is sufficiently cooperative with A (top), the
rise of B2 leads to a rise in A that ultimately drives B1 to dominate. For higher
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δc the strength of cooperation between B2 and A is not sufficient. The indirect
beneficial effect of B2 over B1 is not present (bottom), and B1 can dominate
only if initial conditions are favourable.

Figure 3: Equilibrium configurations for the well-mixed system. Final
outcome obtained by numerically integrating equations (1) for Bi(t = 0) =
0.001, A(t = 0) = 0.01. (a) α = 0.6, β2 = 1.5, c1 = 4. Boundaries of the
[A&B1] state for different initial conditions are indicated by red-scale contours.
(b) α = 0.8, β2 = 1.1, c1 = 7. Here, the boundaries of the [A&B2] are shown
(in blue shades), together with the ones of [A&B1].

In the bistable and multi-stable regions, the outcome of the competition
is determined by initial conditions. While a mathematical analysis is compli-
cated due to the multi-dimensionality of the problem, we gained insights into
the basins of attraction by numerically integrating equations (1) while exploring
different combinations of Bi(t = 0) and A(t = 0). For the bistability between
the regions of B1 and B2 dominance, we considered the parameter combination
of figure 2a and show in figure 3a the states that are reached starting from
Bi(t = 0) = 0.001 and A(t = 0) = 0.01. The bundle of curves with differ-
ent shades of red (from light to dark) indicates the boundary of the [A&B1]
equilibrium when B1(t = 0) and B2(t = 0) are equally increased. We found
that an increase in B1’s initial infected densities favours the [A&B1] state, as
expected. Interestingly, however, an increase in B1(t = 0) results in the [A&B1]
region to expand even when B2’s density increases at the same level. Figure 3b
shows that a similar behaviour is found when parameters are as in figure 2b. In
this case, the region [A&B2] expands together with the [A&B1] one. Thus, in-
creased initial frequencies promote co-circulation between B and A. In figure S2
we present a deeper exploration of initial conditions, considering the parameter
combination of figure 2a as an example. We found that an increase in the initial
level of A also favours B1. However, the initial advantage (either in B1(0) or
A(0)) that is necessary for B1 to win against B2 increases as δβ increases.
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The stability diagrams obtained with several parameter sets, explored in a
latin-square fashion, is reported in figure S1. This shows that increased trans-
missibility and cooperativity levels enhance the cooperative interaction of Bi
strains with A. This results in an increase in the parameter region for which
B1 together with A dominates over B2. For instance, the comparison between
panels (d) and (f) in the figure shows that, by increasing β2 from 1.1 to 1.5, the
same difference in strain epidemiological traits, δc and δβ , may lead to a switch
in dominance from B2 to B1.

3.2 Continuous system with communities

Figure 4: Equilibrium configurations for two interacting communities.
Final outcome obtained by numerically integrating the equations when: (a) all
strains start in the same community (together with A); (b) B1 and B2 start
in separate communities, with A starting together with B2; (c) A starts along
with B1, while B2 starts separately. Initial density of each pathogen/strain is
0.01. Here ε = 0.0002. Other parameters are as in figure 2a.

We now consider a population that is divided into two communities (cf.
figure 1c). For simplicity, we assumed that they are of the same size. To
differentiate transmission within and across communities, we rescaled the force
of infection produced by individuals of a different community by a factor ε, and
the force of infection of individuals of the same community by 1−ε. We assumed
0 < ε ≤ 1

2 in order to consider the case in which individuals mix more within
their community than outside - the limit ε = 1

2 corresponds to homogeneous
mixing.

Given the high number of variables, a stability analysis is difficult in this
case. Still, the dynamics can be reconstructed through numerical integration
of the equations. Figure 4 shows the final states with fixed ε, β2, C1 and α.
Other parameter values are analysed in figure S3. Figures 4a-c compare different
seeding configurations, while keeping the initial density of each pathogen/strain
to 0.01: (a) all strains are seeded in community 1 and community 2 is completely
susceptible; (b) B1 is seeded in community 1 while B2 and A are initially present
in community 2 only; (c) B1 and A are seeded together in community 1, while
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Figure 5: Role of spatial separation for two interacting communities.
(a-c) Dynamical trajectories within community 1 and 2 obtained for (a) ε = 0.02,
(b) ε = 0.006, and (c) ε = 0.0005. (d,e) Boundaries in the δc, δβ plane delimiting
the regions where the dynamics ends up in: (d) B1 persistence (i.e. [A&B1]
or full co-existence); (e) [A&B1] state. In all panels, A and B1 are seeded
together into one community, while B2 is seeded into the other community; the
initial density of each species is set to 0.01. Trajectories are obtained by setting
δc = 1.5, δβ = 0.025 (black star in panels (d),(e)). Other parameters are as in
figure 2a.

B2 is seeded in community 2. In all cases we found a diagram with shape similar
to figure 3a. However, a new region is now present (indicated in black) where
all players co-exist. This occurs when strains are separated since the beginning
– see figure S4 for additional seeding configurations. Interestingly, however, this
happens also for a tiny region of the parameter space, when all strains are seeded
together (panel a), provided that the other community is initially disease-free.

Figure 5 sheds light on the dynamics leading to the outcomes of figure 4.
In order to benefit from the cooperative advantage, the B1 incidence must be
above a certain threshold. Figures 5b,c show that incidence of A remains close
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to zero, until incidence of B1 is sufficiently high. With B2 seeded on a different
community (community 2), the direct interaction between the two strains is
delayed by the time necessary for B2 to reach the community of B1. For high
ε the delay is short and B2 reaches community 1 before A incidence starts to
raise (figure 5a). On the other hand, for lower ε, B1 has enough time to build
up a cooperative protection before the arrival of B2. This makes it resistant to
the invader. At intermediate ε, B1 becomes able to overcome B2 in community
2. For small ε, strains spread in their origin community independently from one
another.

In summary, a decrease in ε increases the region of B1 persistence (figure 5d).
However, this may be associated to either B1 dominance or co-existence. Reduc-
ing the values of ε, the region corresponding to the [A&B1] state expands first
and shrinks later, leaving the place to the co-existence region. This is shown by
the non-monotonous change of the [A&B1] region in figure 5e.

When all strains start in the same community, co-existence is enabled by a
segregation mechanism similar to the one described above. In this case, sepa-
ration occurs during the early stage: B2 rapidly spreads in the other commu-
nity due to its advantage in transmissibility, and becomes dominant there (cf.
figure S5). This enables co-existence in a parameter region where B1 would
otherwise dominate.

Results described so far were obtained with fixed values of β2, C1 and α.
Additional parameter choices are shown in figure S3. Increasing in α was found
to enlarge the B1 dominance region, as in the well-mixed case. In addition,
co-existence becomes possible for α > 1 in a very small region of the parameter
space.

3.3 Spreading on networks

The continuous deterministic framework analysed so far does not account for
stochasticity and for the discrete nature of individuals and their interactions.
These aspects may alter the phase diagram and shape the transitions across
various regions. We casted our model on a discrete framework in which individ-
uals are represented by nodes in a static network. Possible individual states are
still the same as in the mean-field formulation, and infection can spread only
between neighbouring nodes. We first considered an Erdős-Rényi graph, where
the mixing is homogeneous across nodes. Denoting N the number of nodes
and k̄ the average degree, the network was built by connecting any two nodes
with probability k̄/(N − 1). We run stochastic simulations of the dynamics. In
order to see the effect of multi-pathogen interactions, we minimised the chance
of initial stochastic extinction by infecting a relatively high number of nodes
at the beginning: 100 infected for each infectious agent. We then computed
the fraction of stochastic simulations ending up in any final state, the average
prevalence for each strain (X1, X2) in the final state and the average coexistence
time. Additional details on the network model and the simulations are reported
in the Supplementary Material.
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The phase diagram of figure 6a is similar in many aspects to its continu-
ous deterministic version (figure 3a). Three final states are possible, i.e. [B2],
[A&B1] and [A&B2] (figure 6a). Here, however, the same initial conditions
and parameter values can lead to different stochastic trajectories and station-
ary states. For instance, the red region in the figure corresponds to the case
in which the final state [A&B1] is reached very frequently; however, the dy-
namic trajectories can end up also in the [A&B2] or in the [B2] states. The
transitions across the different regions of the diagrams can be very different,
as demonstrated by figures 6b-g. Panels b,c show the effect of varying δc at
a fixed δβ . The transition between [A&B2] and [A&B1] on the left is sharp.
Both the probability of one strain winning over the other and the equilibrium
prevalence change abruptly for a critical value of δc. Here, the spreading is
super-critical for all pathogens: β1, β2 > 1 and c1, c2 are sufficiently high to
sustain the spread of A. The transition is due to the trade-off between B1 and
B2 growth rates. Conversely, the probability of ending up in the [B2] state rises
slowly, driving the gradual transition from the red to the light blue region on
the right. This region appears in correspondence of the bistable region of the
continuous/deterministic diagram – figure 2. Here, A undergoes a transition
from persistence to extinction, driven by the drop in c2 (figure S6). This critical
regime is characterised by enhanced stochastic fluctuations. When δc is fixed
and δβ varies, we found a sharp transition (panels d,e) and a hybrid transition,
where the final state probability varies gradually and the equilibrium prevalence
(X1) varies abruptly (panels f,g).

We concluded by analysing the effect of community structure. Each node
was assigned to one among nC communities, which we assumed for simplicity
to have equal size N/nC , and has a number of open connections drawn from
a Poisson distribution with average k̄. Links were formed by matching these
connections according to an extended configuration model, where a fraction ε
of stubs connects nodes of different communities. In this way the model is the
discrete version of the one in Section 3.2.

Mean-field results remain overall valid. The two plots in figure 7 mirror
panels a,c of figure 4 and show a similar behaviour. We find evidence of a
co-existence region (in black in the figure), where no extinction is observed
during the simulation time frame - here set to 2 · 106 time steps, around two
orders of magnitude longer than the time needed to observe strain extinction
in the Erdős-Rényi case. Such region is larger when the two strains are seeded
in separated communities (figure 7b), but it is still visible when strains start
altogether (figure 7a). Co-existence occurs less frequently in the latter case,
since it requires strains to reach the separation during the spreading dynamics.

Analogously to the continuous deterministic model we found that the sepa-
ration in communities favours the more cooperative strain. The region where B1

wins is larger compared to the Erdős-Rényi case (as highlighted by the compari-
son between the dashed and the continuous curves). In addition, the probability
of winning is close to one for a large portion of the [A&B1] dominance region.
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Figure 6: Phase diagram for the Erdős-Rényi network. (a) Frequency
of several stationary states, as obtained in numerical simulations. The colour
scale in the legend quantifies the proportion of runs ending in the different
states among [B2], [A&B2] and [A&B1]. Here, the extremes of the colour map
correspond to the case in which these states are found in 100% of runs. Initial
conditions are shown in the figure. (b-g) Equilibrium state probability (left
column), and distribution of prevalence in the final state (right column) along
the dashed lines in panel (a). Specifically: δβ = 0.001 for (b) and (c); δc = 0.4
for (d) and (e); δc = 1.5 for (f) and (g). Other parameters are µ = 0.05,
α = 0.009, β2 = 0.015, c1 = 4, N = 20000, k̄ = 4. For convenience, the time
step is taken as time unit. It corresponds to 1/20 of the infectious period µ−1.

4 Discussion and conclusion

We presented here a theoretical analysis of a three-player system where both
competition and cooperation act simultaneously. We have considered two com-
peting strains co-circulating in the presence of another pathogen cooperating
with both of them. Strains differ in epidemiological traits, with one strain being
more transmissible but less cooperative than its competitor. Through mathe-
matical analyses and computer simulations we have reconstructed the possible
dynamical regimes, quantifying the conditions for dominance of one strain or
co-existence. We found that the interplay between competition and cooperation
leads to a complex phase diagram whose properties cannot be easily anticipated
from previous works that considered competition and cooperation separately.

We showed that it is possible for a more cooperative strain to dominate
over a more transmissible one, provided that the difference in transmissibility
is not too high. This suggests that the presence of another pathogen (A) might
alter the spreading conditions, creating a favourable environment for a strain
that would be otherwise less fit. While dominance depends on the difference in
epidemiological traits, we found that variations in the absolute cooperation and
transmissibility levels may change the hierarchy between strain – analogously
to [15] – with a higher spreading potential of either Bi or A favouring the more
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Figure 7: Phase diagram for the random modular network. Frequency
of equilibrium configurations, as obtained in the numerical simulations, with
(a) A, B1 and B2 starting in the same community, and (b) A and B1 starting
from a different community to B2. Detailed initial conditions are directly shown
on each panel. The colour scale is the same as in figure 6. The frequency of
runs for which co-existence of all strains was observed after Tmax = 2 · 106

time steps is shown with different shades of black. Contour lines representing
the 0.5 probability to end up in the [A&B1] state are indicated to enable a
comparison between the Erdős-Rényi (dashed line) and the random modular
network (continuous line). We considered nC = 10 and ε = 0.003. Other
parameter values are as in figure 6.

cooperative strain.
Interestingly, the cooperative strain can dominate also when A has a sub-

critical reproductive ratio (α < 1) – when spreading alone – and relies on the
synergistic interaction with B strains to persist. The dynamical mechanisms un-
derlying this outcome are complex. We analysed a case with a small difference
in cooperativity, and we found that the more transmissible strain, by spreading
initially faster, creates the bulk of A infections that in turn favour its competi-
tor. In other words, direct competition for susceptible hosts is not the only force
acting between strains: an indirect, beneficial interaction is also at play, medi-
ated by the other pathogen. The dominance outcome is thus the result of the
trade-off between these two forces. When the difference in cooperation is higher,
two or more stationary configurations are possible. In this scenario, the final
outcome is determined also by the initial frequency of each pathogen/strain.
We found that, in certain situations, an initial advantage of one strain is able to
drive it to dominance. This is in contrast with simpler models of competition,
where the final outcome is determined solely by the epidemiological traits. The
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outcome, however, is also governed by pathogen A that favours the more co-
operative strain. Previous works have analysed multistability in two-pathogen
models with cooperation in relation to the hysteresis phenomenon, where the
eradication threshold is lower than the epidemic one [42, 38, 41]. A similar
mechanism could be at play here. However, the identification of hysteresis loops
requires a better reconstruction of the attraction basins. While the numerical
work presented here provided some preliminary understanding, a deeper math-
ematical analysis would be needed in this direction. Multistability is, instead,
not present in two-pathogen models with complete mutual exclusion. This dy-
namical feature emerges, however, in the more general case where strains are
allowed to interact upon co-infection [15].

While we did not find stable co-existence among strains in the well-mixed
system, co-existence was possible in presence of community structure. In this
case, strains can minimise competition for hosts through segregation. Impor-
tantly, spatial separation alone is not sufficient to enable co-existence between
two strains, when complete mutual exclusion is assumed. This was already
known from previous works that showed that community structure must be
combined with some level of heterogeneity across communities to enable co-
existence, e.g. a strain-specific adaptation to a population or environment to
create an ecological niche [36, 34, 45, 46, 47]. Here, communities are homoge-
neous and co-existence is the result of the interplay between community struc-
ture and presence of the cooperative pathogen. When the two strains are seeded
in different communities, their interaction occurs after the time lag necessary
for one strain to invade the other community. We found that this interval may
allow the resident strain to reach the bulk of infections necessary to fend off the
invasion. This mechanism is rooted again in the effect of pathogens’ frequencies
on strain selective advantage. The drivers of strains’ co-existence remain an
important problem in disease ecology with applications to both vaccination and
emergence of anti-microbial resistance. Within-host and population factors have
been studied in the past by several modelling investigations. Notably, while co-
existence is not possible in models with complete mutual exclusion, this may be
enabled in co-infection models [15, 48, 16, 17, 18]. Other models have addressed
environmental and host population features, such as age-structure, contacts dy-
namics and spatial organisation [19, 20, 21, 35]. However, little attention has
been dedicated to the effect of an additional co-circulating pathogen. Cobey
et al. studied the interaction between Haemophilus influenzae and S. pneumo-
niae co-circulating strains [49]. Despite the numerous differences between our
model and theirs, their work provides results consistent with ours. Namely, the
multi-strain dynamics can be affected by another pathogen.

We simulated the three-player dynamics on networks and we obtained phase
diagrams that are similar to the continuous-deterministic counterparts. The
discrete/stochastic framework, however, allows for observing the nature of the
phase transitions. Several works recently studied the nature of the epidemic
transition for two cooperating pathogens, highlighting differences with the single-
pathogen case. Cooperation was found to cause discontinuous transitions where
the probability of an outbreak and prevalence change abruptly around a crit-
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ical value of the transmission rate [39, 42], akin to other complex contagion
mechanisms such as the ones found in social contagion [50, 51]. This phe-
nomenon, however, is sensitive to the network topology, with continuous, dis-
continuous and hybrid, i.e. continuous in the outbreak probability and discon-
tinuous in the prevalence, transitions observed according to the topology of the
network [39, 42, 38, 41, 52, 53, 54]. Here we found rich dynamics as the im-
pact of stochastic effects. These effects were less important when the difference
between strains’ epidemiological traits was small. Conversely, for a higher dif-
ference in cooperative factor different outcomes are equally probable. Results
presented here are preliminary and limited to two network configurations. Fu-
ture work should investigate additional network topologies, e.g. a power-law
degree distribution, and further values of the network parameters. In addition,
more sophisticated numerical analysis (e.g. scaling analysis) would be needed
to better classify the nature of the phase transitions.

Concurrence of inter-species cooperation and intra-specie competition is
present in many epidemiological situations. Currently, around 90 distinct S.
pneumoniae serotypes are known to co-circulate worldwide, despite indirect
competition mediated by host immune response [4]. The emergence of antibiotic-
resistant strains and the development of vaccines able to target only a subset
of strains has motivated extensive research on the drivers of S. pneumoniae
ecology [4, 20, 5]. Strain circulation is facilitated by respiratory infections, e.g.
influenza [55, 56] and some bacterial infections [11, 12]. Cooperative behaviour
has been observed also between HIV and infections such as HPV, tuberculosis
and malaria [9, 10, 57, 1, 58]. This increases the burden of these pathogens
and causes public health concern. At the same time, there is evidence that
different strains of tuberculosis [2, 59], malaria [3], and HPV [60, 61, 62] may
compete. In particular, multidrug-resistant strains of tuberculosis (MDR-TB)
are widely spread, although the acquisition of resistance seems to be associated
to a fitness cost [58, 63]. The synergistic interaction with HIV could play a role
in this emergence and surveillance data suggest a possible convergence between
HIV and MDR-TB epidemics in several countries [58]. Our theoretical work
highlights ecological mechanisms potentially relevant to these examples. In this
regard, an essential aspect of our model is the trade-off between transmissi-
bility and cooperativity in determining strain advantage. Although differences
in transmissibility across strains have been documented, e.g. fitness cost of
resistance [64], gathering information on strain-specific cooperative advantage
remains difficult. The theoretical results illustrated here show the importance
of quantifying this component for better describing pathogen ecosystems.

This study also represents the starting point of more complex models where
multiple strains are involved and competition and cooperation are acting si-
multaneously. Patterns of competitive and cooperative interactions could be
at play for instance among recently emerged pathogens such as Zika virus [65].
Zika virus has emerged in regions where Dengue and Chikungunya viruses are
endemic. Observed patterns of sequential monodominance by one arbovirus at
a time at a given location suggest competition between these pathogens [66].
Also, considerable effort is currently devoted to characterising possible positive
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interactions between Zika virus and HIV [65]. In some cases, different strains
of the same pathogen can interact both competitively and cooperatively, as in
the case of Dengue [8, 14]. Primary Dengue infections are characterised by mild
symptoms and grant short-term cross-protection against other serotypes. As
cross-immunity wanes over time, however, secondary Dengue infections not only
become possible but are also associated with severe illness and with increased
virulence.

The examples above involve diseases with varying natural history and time
scales and should be modelled with different compartmental models – SIR, SI,
SIS, SIRS. We decided here to consider two SIS pathogens and the results cannot
be readily extended to other models, since the dynamics of disease unfolding
alters the outcome of strain interactions. It is important to notice, however,
that several dynamical properties of competitive and cooperative interactions,
such as dominance vs. co-existence [27] and abrupt transitions [67, 68, 69], hold
for both SIS and SIR.

The model studied here is based on certain simplifications. All pathogens
are assumed to have the same recovery rate; moreover, cooperation acts in both
directions and the same factors ci quantify the enhancement in susceptibility
when A infection occurs before Bi infection and vice versa. These assumptions
may not hold for many synergistic pathogens, especially when cooperative ben-
efits are based on different biological mechanisms. For instance, while HIV in-
creases susceptibility against P. falciparum, the latter increases HIV’s viral load,
thus increasing HIV’s virulence rather than host susceptibility to HIV [10, 57].
It is likely that, by relaxing these assumptions, our model could exhibit even
more complex phase diagrams. Eventually, other aspects of the disease-specific
mechanisms and multi-pathogen interactions could affect the results presented
here and should be addressed in future works. These include latent infections,
which are characteristic, for instance, of tuberculosis [2], partial mutual exclu-
sion among strains [2, 6, 15, 16], or interaction mechanisms other than the ones
introduced here (e.g. affecting the infectious period [24]).

In conclusion, we have provided a theoretical study of a dynamical system
where both competition and cooperation are at play. We found that a less
transmissible and more cooperative strain may dominate; however, the condi-
tions on the parameters for this to happen are non-trivial (non-monotonic) and
the outcome critically depends on initial conditions and stochastic effects. When
coupled with population structure, the presence of a cooperative pathogen may
create the conditions for multi-strain co-existence by dynamically breaking the
spatial symmetry and creating ecological niches. These results provide novel
ecological insights and suggest mechanisms that may potentially affect the dy-
namics of interacting epidemics that are of public health concern.

Data availability

The python code used for the mean-field analyses and the C++ code for the
stochastic simulations on networks are publicly available at the following link:
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https://github.com/francescopinotti92/Competition-Cooperation.
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ticle velocity controls phase transitions in contagion dynamics. Scientific
Reports, 9(1):1–9, April 2019.

[54] Wonjun Choi, Deokjae Lee, J. Kertész, and B. Kahng. Two golden times
in two-step contagion models: A nonlinear map approach. Phys. Rev. E,
98(1):012311, July 2018.

[55] Sourya Shrestha, Betsy Foxman, Daniel M. Weinberger, Claudia Steiner,
Cécile Viboud, and Pejman Rohani. Identifying the interaction between
influenza and pneumococcal pneumonia using incidence data. Sci Transl
Med, 5(191):191ra84, June 2013.

[56] Lulla Opatowski, Marc Baguelin, and Rosalind M. Eggo. Influenza interac-
tion with cocirculating pathogens and its impact on surveillance, pathogen-
esis, and epidemic profile: A key role for mathematical modelling. PLOS
Pathogens, 14(2):e1006770, February 2018.

[57] Laith J. Abu-Raddad, Padmaja Patnaik, and James G. Kublin. Dual infec-
tion with HIV and malaria fuels the spread of both diseases in sub-Saharan
Africa. Science, 314(5805):1603–1606, December 2006.

23



[58] Charles D. Wells, J. Peter Cegielski, Lisa J. Nelson, Kayla F. Laserson,
Timothy H. Holtz, Alyssa Finlay, Kenneth G. Castro, and Karin Weyer.
HIV infection and multidrug-resistant tuberculosis: the perfect storm. The
Journal of Infectious Diseases, 196 Suppl 1:S86–107, August 2007.

[59] D. W. Dowdy, C. Dye, and T. Cohen. Data needs for evidence-based
decisions: a tuberculosis modeler’s ’wish list’. Int. J. Tuberc. Lung Dis.,
17(7):866–877, July 2013.
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1 Methods

Mean-field dynamics

We studied the mean-field dynamical system described by equations (1) in the
main paper by stability analysis and numerical integration. We derived closed-
form expressions for all fixed-points and almost all conditions underlying their
local stability. We used numerical evaluation of the Jacobian’s spectrum to
study stability whenever an analytical solution was not possible and to check
the accurracy of the analytical results as well. We then numerically integrated
the mean-field equations exploring different initial conditions. Numerical inte-
gration of the ordinary differential equations was performed in Python 3.6 using
the function odeint from the Scipy package.
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Mean-field dynamics with communities

The epidemic in each population follows the same dynamics as in equations (1)
of the main text. The infection terms, however, must be modified in order to
account for the different contributions (between and within community) to the
force of infection. Specifically, the force of infection due to, e.g. B1, acting on

an individual in community c = 1, 2 becomes β1
[
(1 − ε)X(c)

1 + εX
(c′)
1

]
, where

c 6= c′. The two distinct terms appearing in this expression represent the con-
tributions due to infected individuals in the same community (c) and in the
other community (c′), respectively. Notice that for 2 interacting populations, as
considered in the main paper, we can reduce the number of independent equa-
tions from 12 to 10 by exploiting density conservation within each populations,
i.e.

∑
Z Z

(c) = 1, where Z(c) denote the fraction of individuals in state Z and
community c = 1, 2. Numerical integration of these equations is performed in
the same way as in the case of a single population.

Network models

We used the algorithm outlined in [1] to efficiently generate Erdős-Rényi net-
works. In order to generate modular networks with nC communities and ad-
justable community strength, we first group nodes into nC different communi-
ties. Here we chose for simplicity to assign exactly N/nC nodes to each commu-
nity. Each node receives a random number of open connections drawn from a
Poisson distribution with average k̄. We then classify each of these connections
as either a within-community or an inter-community stub with probabilities
1− ε and ε, respectively. Links are finally created by matching stubs. Within-
community (between-community) stubs are matched with each other according
to a configuration model. We eventually discard self-links, multiple links be-
tween any pair of nodes and unmatched stubs. For large networks, the number
of discarded stubs is usually negligible compared to the number of links. Notice
that this algorithm enables us to independently set both the degree distribution
and the strength of the community structure.

Simulating spread of concurrent diseases on networks

Simulations occur in discrete time. During each time step we check first for
possible infection events caused by infected nodes and then for recovery events.
Every infected node tries to transmit the disease(s) it is carrying to each of its
neighbours. Each naive susceptible individual (compartment S) can get infected
by pathogen A with probability 1 − (1 − α)nA , where nA is the number of its
susceptible neighbours carrying A. At the same time, a naive susceptible can
also be infected by either B1 or B2. To avoid co-infections with B1 and B2,
we loop over the neighbours of the naive node in a random order, checking
for each infectious neighbour node if infection occurs or not (according to the
corresponding infection probability, i.e. either β1 or β2) and stopping iteration
at the first successful infection event. Transmission with either B1 or B2 can
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occur independently from A, thus direct transitions from S to either D1 or D2

compartments are allowed. Secondary infections are implemented in a similar
way.

For convenience, the simulation time step ∆t was taken as the time unit. To
avoid possible spurious effects due to time discretisation we set the infectious
duration to be longer than the time step, i.e. µ−1 = 20∆t. During each time
step, infected individuals recover from each of the diseases they are carrying
with probability µ. As a consequence a doubly infected individual can turn into
a fully susceptible individual with probability µ2. Individuals cannot recover
during the same time step they got infected.

For each simulation, we initially choose 100 nodes for each pathogen and set
them infected with that pathogen. In the Erdős-Rényi case initially infected
nodes are chosen at random, whereas in the case of modular networks the in-
fected seeds are chosen at random within the community where a particular
pathogen is seeded. We stop simulations 400 time steps after either B1 or B2

becomes extinct, or, alternatively, after reaching the maximum simulation time
Tmax. The former stopping condition is dictated by the need to discern simula-
tions where A is able to persist from those where it becomes extinct right after
extinction of either one of the B strains. When any of the stopping conditions
is met, we check which pathogens have survived and the corresponding preva-
lence. To reconstruct the phase diagram of figures 4 and 5 of the main paper
we have 500 and 140 simulations for any given point in the parameter space for
the Erdős-Rényi and modular networks respectively.

2 Results

2.1 Equilibria and stability analysis for the well-mixed
system

Here we enumerate fixed points and study the stability of each equilibrium point
by finding the eigenvalues of the corresponding Jacobian matrix J . Because
total density is conserved, the effective number of independent equations can be
reduced from 6 to 5. Therefore J is a 5x5 matrix. In the following we eliminate
A exploiting total density conservation and consider S,B1, B2, D1, and D2 as
independent variables. A is kept as a placeholder for 1−S−B1−B2−D1−D2.
The general form of the Jacobian is given by:




α(S∗ −X∗A)− 1− β1X∗1 − β2X∗2 S∗(α− β1) S∗(α− β2) −1− β1S∗ −1− β2S∗
c1αB

∗
1 + β1X

∗
1 c1α(B∗1 −X∗A) + β1S

∗ − 1 c1αB
∗
1 1 + β1S

∗ 0
c2αB

∗
2 + β2X

∗
2 c2αB

∗
2 c2α(B∗2 −X∗A) + β2S

∗ − 1 0 1 + β2S
∗

−c1(αB∗1 + β1X
∗
1 ) c1β1(A∗ −X∗1 ) + c1α(X∗A −B∗1) −c1(αB∗1 + β1X

∗
1 ) c1β1(A∗ −X∗1 )− 2 −c1β1X∗1

−c2(αB∗2 + β2X
∗
2 ) −c2(αB∗2 + β2X

∗
2 ) c2β2(A∗ −X∗2 ) + c2α(X∗A −B∗2) −c2β2X∗2 c2β2(A∗ −X∗2 )− 2




(1)

1. Disease free state: S∗ = 1.
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For this equilibrium J takes the form of an upper triangular matrix.
Therefore the eigenvalues can be read off immediately since they coin-
cide with the diagonal elements. In particular: λ ∈ {α − 1, β1 − 1, β2 −
1,−2,−2}. Stability is therefore ensured if and only if all base transmis-
sion rates are smaller than 1.

2. Pathogen A only ([A]): S∗ = 1/α,A∗ = 1 − 1/α, which is feasible if
and only if α > 1.

In this case one eigenvalue can be found immediately by inspection and it
is equal to 1−α, which is always negative when this equilibrium is feasible
(i.e. α > 1). The rest of the Jacobian matrix takes a 2x2 block diagonal

form with diagonal blocks J
[A]
i (i = 1, 2) given by:

J
[A]
i =

(
−1 + ci(1− α)βi/α 1 + βi/α
ci(βi + α)(1− α−1) −2 + ciβi/α

)
, (2)

whose eigenvalues can be determined by considering the matrix Γ(λ) =

J
[A]
i − λI2, where In is the nxn identity matrix. We subtract the second

column of Γ from the first column obtaining a new matrix Γ′. By con-
struction det(Γ) = det(Γ′). Therefore, the characteristic polynomial is the
same. Now, however, the latter polynomial already appears in a factor-
ized form, yielding the eigenvalues λ = −2 − ci(α − 1), which is always
negative, and λ = −1 +βici(1−α−1) +β/α, which is negative if and only

if βi <
α

1 + ci(α− 1)
. For α > 1 (condition for the solution to be feasible,

as written above), this is never true if either one of Bi is super-critical.

3. Strain Bi only ([Bi]): S∗ = 1/βi, B
∗
i = 1− 1/βi, which is feasible if and

only if βi > 1.

In the following we will use the index i to refer to strain Bi while the
index j will indicate the competitor. Here J can be broken down into a
2x2 upper triangular matrix and a 3x3 matrix. The former has eigenvalues

-2 and −1 +
βj
βi

. Therefore, stability requires βi > βj . The remaining 3x3

matrix J
(Bi)
3 takes the form:

J
[Bi]
3 =



αS∗ − 1− βiB∗i αS∗ − 1 −2
αciB

∗
i + βi − 1 αciB

∗
i 2

−ci(α+ βi)B
∗
i −ci(α+ βi)B

∗
i −2− βiciB∗i


 , (3)

which can be easily diagonalized by considering the matrix Γ(λ) = J
[Bi]
3 −

λI3 and performing the following row operations: first add its first row
to its second row, then add the second row to its third row; the first row
is left unchanged. This procedure enables writing down the characteristic
polynomial in an easy-to-factorize form, yielding the eigenvalues λ = 1−βi,
λ = −2−ci(βi−1) and λ = αciB

∗
i −1+αβ−1i . The former two are always
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negative when this equilibrium is feasible, while the latter is negative if

and only if α <
βi

1 + ci(βi − 1)
, which is never true if the spreading of A

is super-critical.

4. A and Bi syndemic ([A&Bi]): By using the equilibrium conditions
Ẋi = 0 and ẊA = 0,

βi(S
∗ + ciA

∗)− 1 = 0, (4)

and
α(S∗ + ciB

∗
i )− 1 = 0, (5)

we find that B∗i =
1− αS∗
ciα

and A∗ =
1− βiS∗
ciβi

. By exploiting density

conservation, i.e. D∗i = 1 − S∗ − A∗ − B∗i , we can express every variable
in terms of S∗. The latter is determined by a quadratic polynomial whose
roots are given by:

S∗± =

1±
√

1− 4

ciβiα

(
1− 1

ci

)

2

(
1− 1

ci

) , (6)

which exists if αβi > 4(ci − 1)/c2i .

Here J can be broken down into a 2x2 and a 3x3 matrices. The smaller
matrix J

[A&Bi]
2 is given by:

J
[A&Bi]
2 =

(
βjS

∗ − αcjX∗A − 1 1 + βjS
∗

−cj(αX∗A + βjA
∗) −2− βjcjA∗

)
, (7)

which can be easily diagonalised by using row/column operations, yielding
the eigenvalues λ = −2−cjαX∗A and λ = −1+βj(S

∗+cjA
∗). The former

is always negative while the latter corresponds to the asymptotic growth
rate of Xj . This is the only eigenvalue in which parameters βj , cj , which
pertain to the competitor strain, appear.

J
[A&Bi]
3 instead takes the form:



α(S∗ −X∗A)− βiX∗i − 1 S∗(α− βi) −1− βiS∗

ciαB
∗
i + βiX

∗
i ciα(B∗i −X∗A)− 1 + βiS

∗ 1 + βiS
∗

ci(αB
∗
i + βiX

∗
i ) ciα(X∗A −B∗i ) + ciβi(A

∗ −X∗i ) −2 + ciβi(A
∗ −X∗i )


 . (8)

Although the spectrum of J
[A&Bi]
3 cannot be determined analytically, we

can still gain some insight about stability conditions by studying its char-

acteristic polynomial. We do so by first computing Γ(λ) = J
[A&Bi]
3 − λI3.

We then consider the matrix Γ′ obtained by adding the first row of Γ to
the second row and adding the second row to the third row. The charac-
teristic equation takes the form P (λ) = λ3+a2λ

2+a1λ+a0 = 0. Now, the

5



Routh-Hurwitz criterion states that in order for all P (λ)’s roots to have
a negative real part, the following conditions must be satisfied: a2 > 0,
a0 > 0 and a2a1 > a0. We find that:

a2 = 2 + (ci + 1)(αX∗A + βiX
∗
i ), (9)

a1 = αβic
2
iX
∗
i X
∗
A+ci(2+αX∗A+βiX

∗
i )(αX∗A+βiX

∗
i )+(1−ci)(α2X∗A+β2

iX
∗
i )S∗

(10)

a0 = αβic
2
iX
∗
i X
∗
A(α+ βi)(1− 2(1− 1/ci)S

∗), (11)

so a2 > 0 always. Substituting S∗± inside the definition of a0 yields
a0(S∗+) < 0 and a0(S∗−) > 0. Therefore according to the Routh-Hurwitz
criterion the solution S∗+ is never found to be stable. S∗− is, instead, stable
when the condition a2a1 > a0 is satisfied. The feasibility of [A&Bi] state
can be checked numerically as well by requiring that S∗, A,B∗i , D

∗
i > 0.

In particular, the condition αβi > 4(ci− 1)/c2i ensures that S∗− is real and
positive and explains the vertical boundary delimiting the [A&B2] stable
region in figure 2b in the main manuscript.

5. All strains coexist We first consider the equilibrium conditions Ẋi =
0, i = 1, 2, given by Eq. (4), which allow us to obtain S∗ and A∗:

S∗ =
c2β2 − c1β1
β1β2(c2 − c1)

,

A∗ =
β2 − β1

β1β2(c1 − c2)
.

Notice that if β2 > β1, then we need c1 > c2 and c1β1 > c2β2 for this
fixed point to be feasible. After some algebra one can obtain a quadratic
equation for B∗1 :

(
1 + β2S

∗
)(

1− S∗ −A∗
)

+ c−12

(
S∗ − α−1

)(
1 + αS∗ + αc2(1− S∗)

)
+

B∗1

{
− 1− β2S∗ −

1 + β2S
∗

1 + β1S∗

(
1− c1/c2 + αc1 − (β1 + αc1(1− c−12 ))S∗

)
+

(
1− αS∗

)(
1− c1/c2

)
+ c1/c2

(
1 + αS∗ + αc2(1− S∗)

)}
+

B∗21 αc1

(
c1/c2 − 1

)(
1− 1 + β2S

∗

1 + β1S∗

)
= 0. (12)
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Once the roots of the latter equations have been found, the remaining
fractions can be computed using:

B∗2 = c−12

(
α−1 − S∗ − c1B∗1

)
,

D∗1 =
1− β1S∗ + αc1

(
1− S∗ −B∗1 −B∗2

)

1 + β1S∗
B∗1 ,

D∗2 = 1− S∗ −A∗ −B∗1 −B∗2 −D∗1 .

By numerically computing these equilibria, we found that they can be
feasible under certain conditions on the parameters. The condition for
their stability cannot be computed analytically. However, we can still
evaluate the Jacobian at the fixed points and then compute its eigenvalues
numerically and find that the equilibria are always unstable.

Additional results

References
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Figure S1: Phase diagram for different values of β2, α and c1. (a)-(i)
α = 0.8. (j)-(r) c1 = 4. The range of β1 includes values below 1.
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Figure S2: Initial conditions and mean-field dynamics. (a),(b) Final
outcome as a function of B1(0) and B2(0) with A(0) = 0.01. Additional bound-
aries separating the two dominance regions and corresponding to different val-
ues of A(0) are also showed. For each value of A(0) we explore values of B1(0)
and B2(0) in the simplex 0 ≤ B1(0) + B2(0) ≤ 1 − A(0). Prameters were:
(a) δβ = 0.03, δc = 1.5, (b) δβ = 0.15, δc = 2. (c) Minimum amount of
A(0) required in order for B1 to win as a function of δβ and δc, given that
B1(0) = B2(0) = 0.001. (d) Minimum amount of B1(0) required in order for B1

to win as a function of δβ and δc, given that A(0) = 0.01 and B2(0) = 0.001.
Grey regions in (c,d) correspond to either absence of bistability or to parameter
choices for which B1 never wins. This figure shows that a sufficiently large ad-
vantage in terms of initial conditions can lead to B1 winning the competition in
the bistable region. Other parameters are the same as in figure 2a of the main
manuscript.
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Figure S3: Equilibrium configuration for two interacting communities
for different values of β2, α and c1. (a)-(i) α = 0.8. (j)-(r) c1 = 4. Initial
conditions are as in figure 4c of the main paper. Here we have considered values
of δβ and δc such that β1, β2, c1 and c2 are all larger than unity. Increasing
values of α have a positive effect on the persistence of B1.
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Figure S4: Role of initial conditions in mean-field dynamics with com-
munities. Final outcome as a function of δc and δβ for different initial condi-
tions. The title of each panel indicates in which communities each pathogen is
seeded into; the initial density of a pathogen in the community it is seeded into
is set to 0.01. Other parameters are as in figure 4 of the main manuscript.
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Figure S5: Dynamics with two strains seeded in the same community.
Dynamical trajectories of B1’s, B2’s and A’s total prevalence (in red, blue and
gray respectively) in community 1 (a) and 2 (b). Trajectories were obtained

numerically by starting from B
(1)
1 (t = 0) = B

(1)
2 (t = 0) = A(1)(t = 0) = 0.01.

Around t = 10, B2 takes over community 2 as a results of its advantage in
transmissibility. At this point B1’s prevalence declines until A gives rise to
a new outbreak; the latter ultimately leads to a B1 dominance in the first
community. Here we set δβ = 0.025, δc = 1.2 and ε = 0.0002. Other parameters
are as in figure 2a.

Figure S6: Final-state density of XA for stochastic simulations on
ER networks. (a-c) show the probability of the final state for a given value
of XA. Here we do not differentiate between which final state is attained, i.e.
which pathogen persists. (a) has been obtained for δβ = 0.001, while (b) and
(c) have been obtained for δc = 0.4 and δβ = 1.5, respectively. In (a) we can
observe two types of transitions in the behavior of XA: the sharp transition at
δc = 0.5 corresponds to a leap from state [A&B2] to state [A&B1]. As δc is
further increased, extinction of A becomes increasingly probable as the state
[B2] is reached with a higher frequency. This transition is, however, gradual
and around δc = 1.3 a crossover is reached where states [A&B1] and [B2] are
reached with equal probability. Other parameters are as in figure 6.
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4.5 Conclusions

In conclusion, strain dynamics is fundamentally altered by interactions with co-circulating
pathogens. In particular, we showed that a rich phenomenology emerges in a minimal
model accounting for both competitive and cooperative interactions. Importantly, the ob-
served phase diagram is the result of the non-linear interplay between such interactions.

We analytically computed fixed points and the conditions for their stability by means
of linear stability analysis. For some parameter choices, stability regions overlap, giving
rise to bistable and, eventually, multistable behavior. Within these regions of phase space,
epidemiological parameters as well as initial conditions determine the fate of the system.
We presented a numerical analysis of initial conditions for a few parameter choices, high-
lighting the importance of initial conditions. It would be interesting in a future work to
study analytically the shape of attraction basins and thus derive necessary and sufficient
conditions for each final state to be reached.

Contact structure plays an important role on the dynamics. Community structure, for
example, allows population-level co-existence between both strains. In this case, strains
are segregated into different communities in order to minimize competition for hosts. Co-
existence is ultimately maintained thanks to the cooperative pathogen, whose presence
alters the local host environment, dynamically creating multiple ecological niches.

Simulations on Erdős-Rényj and modular networks displayed results analogous to
the mean-field case while also shedding light on the nature of various transitions and on
the role of initial conditions and stochasticity. Additional network structures, e.g. hetero-
geneous degrees, clustering and the time evolution of contacts might alter the dynamics
as well and thus constitute object of future research.

Our work provides new mechanistic insights on ecological factors driving the dynam-
ics of competing strains. Moreover, it represents a starting point towards more complex
models addressing the interplay of multiple biological interactions. With this respect, lift-
ing symmetries in epidemiological parameters within our model is likely to yield more
complex dynamical behavior. Asymmetric cooperation between pathogens A and B, for
instance, may allow full co-existence by creating inter-dependencies between species in-
volved.
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Chapter 5

Conclusions and Perspectives

Diversity in multi-strain assemblies is shaped by many factors, including interference
between different strains/pathogens, as well as environmental and host-related factors.
In this thesis we explored the effects of host-to-host contacts on strain diversity by means
of mathematical modeling.

In Chapter 3 we studied the impact of host contact structure on the dynamics of
mutually-excluding strains. More precisely, we investigated the role of relevant contact
properties through extensive simulations on synthetic networks of contacts. By consid-
ering a neutral epidemiological model, we were able to tease apart the different effects of
contact structure, competition for hosts and stochastic effects. Our analysis revealed the
importance of contact heterogeneities on strain dynamics: highly active hubs facilitate
the spread of some strains while also making it more difficult for new strains to emerge.
As a consequence, heterogeneous contacts support less co-circulating strains compared
to a homogeneous scenario and at the same time promote dominance of a few strains.
The subdivision of hosts into different communities had a positive effect on diversity al-
though its magnitude was small. We also found that strain richness was maximized at
intermediate levels of host length of stay. This result, which arises from the balance be-
tween strain immigration and extinction, suggests that policies aiming to reduce patients’
length of stay could affect the composition of nosocomial pathogens’ populations.

Our theoretical results improved our interpretation of S. aureus carriage data in a hos-
pital. Indeed, structural and temporal heterogeneities in host-to-host contacts were found
to explain part of variability observed in carriage data. Our work may have important im-
plications for the interpretation of strain diversity and for the estimation of strain-specific
parameters. For example, because heterogeneous contact patterns appear to contribute to
competitive pressure, neglecting the complexity of host behavior may overestimate vari-
ation in between-strain transmission potential. This aspect calls for further investigation;
indeed, future work could address the bias introduced by the random mixing hypothesis
on the estimation of strain-specific parameters.

Our approach was inspired by community ecology. Ecological indicators like, e.g.,
richness, Berger-Parker index and Shannon Evenness provided quantitative tools to char-
acterize strain ecology and to assess consequences of mechanistic ingredients on ecolog-
ical diversity. Our epidemiological model was based on parsimonious assumptions. A
similar framework could be tailored to specific diseases or outbreaks by accounting for
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additional ingredients. Here, for example, we relaxed the hypothesis of strain neutrality
and discussed the role of heterogeneous transmissibility. Future work could address ad-
ditional interaction mechanisms, e.g. super-infection, cross-immunity, and partial exclu-
sion; the inclusion of these additional ingredients would allow us to investigate ecologi-
cal questions that have been traditionally addressed in the context of two-strain models
within our multi-strain framework.

In Chapter 4 we explored the effects of a co-circulating pathogen on the dynamics
of two competing strains. We considered a minimal model where different interaction
types are simultaneously at play. More in detail, strains were assumed to mutually ex-
clude each other, whereas the interaction with the second pathogen was assumed to be
synergistic and mediated by increased susceptibility. The final outcome of competition
was dictated not only by the bare transmissibility of each strain but also by their ability to
cooperate with the second pathogen. Our analysis revealed a rich phase diagram whose
features cannot be fully understood by addressing each interaction alone. In fact, we have
shown that certain phenomena arise from the complex interplay of both competitive and
cooperative interactions.

Importantly, host spatial separation was found to play an important role, allowing
population-level coexistence of all species. Nonetheless, the presence of the cooperative
pathogen is key to coexistence since it creates favorable conditions for the less transmis-
sible strain to persist by locally modifying the host environment. Therefore, ecological
niches emerge dynamically in our model thanks to trade-offs between competition, co-
operation and spatial structure.

Our theoretical analysis represents a first step towards a class of more epidemiologi-
cally tailored models. These might include other mechanisms than the ones considered in
this work. For example, if long-lasting immunity is conferred upon recovery, one should
use a different, SIR-like compartmental structure. Additionally, interactions between un-
related pathogens might not be bi-directional nor be driven by the same biological mech-
anism. For example, while HIV increases susceptibility against P. falciparum, the latter
increases the viral load of the former, increasing its transmissibility rather than suscepti-
bility. It is likely that these models will exhibit even more complex behavior than the one
reported in this work; for instance, we expect eventual trade-offs between competitive
and cooperative abilities to allow for coexistence even in homogeneous populations.

In conclusion, this thesis contributes to the literature of multi-strain interaction on
network-structured host populations. We confirm the importance of human contact be-
havior in shaping strain diversity as well as the importance of simultaneously accounting
for both pathogen and host heterogeneities in multi-strain models.
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Appendix A

Multi-strain model

A.1 Model description

In this section we provide a detailed explanation of the compartmental model used in
Chapter 3. We consider a strain population made up by S strains (S is not necessarily
finite). Each strain l = 1, . . . , S is assumed to evolve according to SIS dynamics with
transmissibility βl and recovery rate µl . Strains compete for hosts through mutual exclu-
sion, thus an infected individual is completely protected against further infections until
it recovers. In a neutral scenario strains are assumed to share the same reproductive abil-
ities. This amounts to the parameter choice: βl = β and µl = µ ∀ l = 1, . . . , S. The
compartmental model is shown in Fig. A.1.

The host population is assumed to be open: new hosts arrive at rate λin and are finally
discharged at rate λout. The inverse of λout represents the average length of stay τ. In this
model, the average population size is given by N̄ = λinτ. At admission, any individual
has a probability ps to be already carrying a strain. If S is finite, the latter is chosen at
random, otherwise it is a completely new, previously unseen strain.

FIGURE A.1: Compartmental model. Graphical representation of the com-
partmental model considered.
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In Chapter 3 we considered an additional mechanism through which new strains may
be introduced, namely self-infection S → Il at rate qs. This process models the effects of
potential contamination sources other than observed contacts, e.g. environmental con-
tamination in the form of fomites or transmission due to unobserved contacts; the lat-
ter case might occur when contact structure is actually informed from contact data with
missing interactions due to, e.g., imperfect measurements or interactions with individu-
als that are not included in the study cohort.

A.2 Simulating transmission

Since simulations are carried in discrete time, it is possible for a susceptible individual
to engage in concurrent interactions with individuals carrying different strains. How to
resolve which strain is transmitted during concurrent interactions?

One possible solution is to proceed as follows: we visit infected neighbors sequen-
tially and in random order. For each of them we check whether transmission occurs or
not by taking a draw from a Bernoulli distribution with parameter βl . The latter rep-
resents the probability of transmission given that the currently visited neighbor carries
strain l. We keep on iterating over infected neighbors until a successful transmission
event occurs. In that case, the strain carried by the “successful" neighbor is transmitted.

We now compute the probability P1(n1, n2) that strain 1 is actually transmitted for the
case of two competing strains. Let us assume that a susceptible node is surrounded by
n1 and n2 neighbors carrying strains 1, 2 respectively. We find that P1(n1, n2) is given by:

P1(n1, n2) =
n1

∑
m1=1

n2

∑
m2=0

m1

m1 + m2
B(m1|β1, n1)B(m2|β2, n2) , (A.1)

where B(x|p, n) is the probability that exactly x neighbors out of n are able to transmit
the disease successfully and is given by a binomial distribution. The expression (A.1) is
obtained by conditioning the probability of strain 1 being transmitted on the numbers of
neighbors failing to transmit either strain before a successful transmission event occurs.

P1(n1, n2) can be computed exactly in the neutral case (β1 = β2 = β). By changing
variable from m2 to r = m1 + m2 we obtain:

Pneutral
1 (n1, n2) =

r

∑
m1=1

n1+n2

∑
r=1

m1

r

(
n1

m1

)(
n2

r−m1

)
βr(1− β)n1+n2−r

=
n1

n1 + n2

n1+n2

∑
r=1

(
n1 + n2

r

)
βr(1− β)n1+n2−r

=
n1

n1 + n2
[1− (1− β)n1+n2 ] ,

(A.2)

the sum over m1 is performed by multiplying and dividing each term inside the sum by
(n1+n2

r ) and by recognizing the average value of a hypergeometric random variable. In
the case of s concurrent strains we obtain:
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Pneutral
1 ({nl}l=1,...,s) =

n1

∑ nl
[1− (1− β)∑ nl ] , (A.3)

where ∑ nl is the number of infected neighbors. To derive this result, it is sufficient to
use (A.2) and substitute n2 with the number of infected neighbors that are not carrying
strain 1.

If transmission probabilities differ, the sum in Eq. (A.1) cannot be performed analyti-
cally. However, we can show that P1(n1, n2) satisfies the following recurrence relation:

P1(n1, n2) =
n1

n1 + n2
β1 +

n1

n1 + n2
(1− β1)P1(n1 − 1, n2) +

n2

n1 + n2
(1− β2)P1(n1, n2 − 1) ,

(A.4)
which follows by conditioning on the outcome of transmission by the first visited neigh-
bor. Specifically, four possible outcomes are possible in our case and correspond to
whether the first visited neighbor carries strain 1 or 2 (with probability n1/(n1 + n2)

and n2/(n1 + n2) respectively) and whether transmission occurs or not. If the first strain
carries strain 1 but it is not successful at transmission, the probability that some other
neighbor transmits strain 1 is given by P1(n1 − 1, n2) since only n1 − 1 “attempts" are left
for strain 1. Similarly, if the first neighbor carries strain 2 but does not succeed at trans-
mission, the conditional probability becomes P1(n1, n2 − 1). If the first neighbor trans-
mits strain 1 or 2, the corresponding conditional probabilities are 1 and 0 respectively.
Eq. (A.4) is finally obtained by using the law of conditional probability. This equation,
together with the boundary conditions P1(n1, 0) = 1− (1− β1)

n1 and P1(0, n2) = 0, en-
ables the pre-computation of P1(n1, n2) for any value of n1 and n2. In practice, however,
we chose to not computeP1(n1, n2) explicitly but to rather simulate transmission as ex-
plained at the beginning of this section.
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Appendix B

Condensation threshold on networks

B.1 General framework

In this section we detail a general class of generative network models for which we are
able to compute the condensation threshold. We consider an activity-driven generative
algorithm which yields time-varying networks where each time stamp is created accord-
ing to the same two-step mechanism outlined in Chapter 3: each node i turns active with
probability ai (drawn at admission from some distribution P(a)) and then establishes
a random number of contacts with other active individuals. Contacts are obtained by
matching stubs according to the configuration model algorithm.

Here we assume that an active node with activity potential a is assigned a random
number of stubs m|a given by:

m|a = 1 + χ(a) , (B.1)

where χ(a) is a Poisson random variable with average value 〈χ(a)〉 that depends, in
general, on activity. The average degree of a node with activity a is thus given by:

h(a) = a(1 + 〈χ(a)〉) , (B.2)

where the first factor comes from the probability of being active and the second factor
represents the average number of stubs received upon activation.

In order to extend our mathematical framework to this class of contact networks we
consider an activity-class approximation where individuals are sorted in different classes
according to their activity potential a. We can now write down a set of dynamical equa-
tions in the spirit of heterogeneous mean field theory for the density I(a, β) of individuals
with activity potential a and that simultaneously carry a strain with transmissibility in the
range [β, β + dβ] [234]. At equilibrium we must have:

αP(a)ρ(β)− I(a, β) + ω

[
P(a)−

∫
dβI(a, β)

]
∑
a′

h(a)h(a′)
〈h〉2 I(a′, β) = 0 , (B.3)

where again we have introduced the quantities α and ω, which represent the dimension-
less versions of the introduction rate and transmissibility respectively. Notice that the
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infection term is given by a sum of contributions from all activity classes, with each term
being weighted by the average connectivity between classes a and a′, which is propor-
tional to the product of their average degrees h(a)h(a′). If all nodes activate with the same
probability ā and 〈χ(a)〉 = k̃ − 1, independently from a, we recover a homogeneously-
mixed population with average degree āk̃.

B.2 Analytical results

Once the general mathematical framework B.3 is set, we can derive a general expression
for the condensation threshold for the class of network models that we have just intro-
duced.

Our starting point is Eq. (B.3), which we rewrite in matrix form:

∑
a′

Ma,a′ I(a′, β) = αP(a)ρ(β) , (B.4)

where Ma,a′ = δa,a′ − ω[P(a)−
∫

dβI(a, β)] f (a) f (a′) and f (a) = h(a)/〈h〉 is the rescaled
degree of individuals with activity a. Eq. (B.4) is a linear system of equations whose
solution is given by:

I(a, β) =
αρ(β)

1−ω ∑a S(a) f (a)2
S(a) f (a)

∑a S(a) f (a)
, (B.5)

where we introduced the density of susceptible individuals with activity a: S(a) = P(a)−∫
dβI(a, β). The sampling distribution is obtained by summing Eq. (B.5) over all activity

classes, yielding:

I(β) =
αρ(β)

1−ω ∑a S(a) f (a)2 , (B.6)

Eq. (B.6) is akin to the expression for the sampling distribution obtained under the ho-
mogeneous mixing assumption. Indeed, by using the same arguments from Chapter 3
we find that condensation occurs when:

〈βmax〉 =
µ + λout

〈h〉∑a S(a) f (a)2 , (B.7)

which now depends on network structure as well. The quantity ∑a S(a) f (a)2, which
encodes the dependence on contact structure, can be rewritten as:

∑
a
[P(a)−

∫
dβI(a, β)] f (a)2 = 〈 f 2〉 − Γ , (B.8)

where Γ = ∑a
∫

dβI(a, β) f (a)2. Our aim now is to compute Γ. We argue that at stationa-
riety Γ settles around a constant value which varies slowly with σ in the σ < σc regime.
Thus, we can estimate the condensation threshold by considering the purely neutral sce-
nario and substitute Γ with its neutral counterpart Γ0, obtained by assuming that every
strain has the same transmissibility β0. In this case, the equations (B.3) reduce to:
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− I(a) + αP(a) + ω0 f (a)
[

P(a)− I(a)
]

Θ0 = 0 , (B.9)

where we introduced Θ0 = ∑a f (a)I(a). Θ0 represents the average degree of the in-
fected nodes, rescaled by 〈h〉 and under the assumption of purely neutral dynamics. By
multiplying the last equation by f (a) and then summing over a, we find that Γ0 can be
expressed in terms of Θ0:

Γ0 = 〈 f 2〉 − 1
ω0

(
1− α

Θ0

)
. (B.10)

Θ0 is then found self-consistently by plugging I(a) (obtained from Eq. (B.9)) inside its
own definition:

Θ0 = 1− (1− α)∑
a

P(a) f (a)
1 + ω0Θ0 f (a)

. (B.11)

Once Θ0 is found, we can finally estimate σc from Eq. (B.7):

σc

β0
=

1
η(S)

(
α

Θ0 − α

)
. (B.12)

Although σc cannot be expressed explicitly in terms of α and β0 because of the implicit
dependence through Θ0, we can still obtain additional insight about the condensation
threshold by investigating the properties of Θ0 through Eq. (B.11). We can show for
example that Θ0 ≥ α. Also, Θ0 is found to be an increasing function of β0, approaching
the value 1 as β0 is increased. This last result stems from the fact that for large β0 everyone
is infected, implying that Θ0 ≈ ∑a f (a) = 1. Finally, we have the following result:

lim
β0−→1

σc

β0
=

1
η(S)

(
α

1− α

)
, (B.13)

irrespective of the actual choice of h(a) and P(a). Thus, all network models introduced
in the previous section share the same limiting value of condensation threshold as the
average transmissibility β0 is increased.
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